Code No.: 6207

[Max. Marks: 75

FACULTY OF ENGINEERING

B.E. II/IV (CSE) I SEMESTER (Main) Examination, Nov./Dec., 2009 LOGIC AND SWITCHING THEORY

Time: 3 Hours]

Note – B.	:Ans	swer all questions from Part – A.	Answer any five questions f	rom Part	
_	-	PART		(25 Marks)	
1.	Realize the following function using exclusive OR gates :				
		$F = ABCD + ABCD + \overline{A}BCD + \overline{A}BCD.$			
2.		Convert the hexadecimal number 456 A to its decimal equivalent and the decimal number 9876 to its hexadecimal equivalent number.			
3.	Implement $F = \overline{xy} + x\overline{y} + z$ using NOR gates.			2	
4.	What are the advantages of tabulation method over Karnaugh map method of simplifying logic functions?				
5.	Explain the concept of glitches when combinational circuits are used in conjunction with ripple counters with a suitable example.				
6.	Distinguish between a decoder and demultiplexer.		2		
7.	Draw the excitation table for a JK flip flop. Suggest a method of converting J K flip to D type flip flop.				
8.	Write a VHDL code for a 214 decoder.			3	
9.	Mention how a function can be symmetric with a suitable example.			e. 2	
10.	Distinguish between a synchronous counter and ripple counter.				
		PART	- B	(50 Marks)	
11.	(a)	Prove that the sum of all min tene	ms of a 3 variable Boolean f	unction is	
	(b)	Simplify the following expression	ı:		
		$F(A, B, C) = (A + B) \overline{(A + B + C)}$	+ AB + AC		
	(c)				
12.	(a)	Design a circuit using NAND gat F(A, B, C, D) = ABC + BCD + AC	•		
	(b)	Repeat the above realization usi	ng only NOR gates.	5 + 5	
13.	(a)	(a) Design a 5×32 decoder using only 3×8 decoder modules. Assume that each 3×8 decoder has one active low enable input and one active high enable input.			
	(b)	Distinguish between a decoder a	and encoder.	7 + 3	
(This p	aper (contains 2 pages)		P.T.O.	

- Design a synchronous sequential circuit that follows the state sequence
 14. Design a synchronous sequential circuit that follows the state sequence
 15. The state sequence
 16. The state sequence
 17. The state sequence
 18. The state sequence
 19. The state sequence
 10. The state sequence<
- 15. (a) Design a divide by 5 binary counter using JK flip flops. Plot the output waveform of each flip flop for a continuous input clock signal.
 - (b) Develop a structural VHDL model for a 4 bit synchronous up/down counter. 6 + 4
- 16. (a) Distinguish between prime implicants and essential prime implicants.
 - (b) Simplify the logic function using Quine McClasky method : 3+7 F(A, B, C, D) = \sum m(0, 1, 3, 7, 8, 9, 11, 15)
- 17. Write short notes on the following:

10

- (a) Ripple counter.
- (b) Symmetric relay contact network.
- (c) Asynchronous counter.