

Code No.: 6207

FACULTY OF ENGINEERING B.E. 2/4 (CSE) I Semester (Suppl.) Examination, July 2010 LOGIC AND SWITCHING THEORY

Tir	me: 3 Hours]	. [Max. Marks:	75
	Note: 1) Answer all questions from Part A. 2) Answer any five questions from Par	rt B.		
	PART - A			25
***	. Convert the decimal number 6789 to hexa decimal numb decimal number to its decimal equivalent.	er and conver	t the hexa	2
2.	. What do you understand by universal gates? Prove tuniversal gate.	that NAND g	rate is a	3
3.	Implement $F = \overline{xy} + x\overline{y} + z$ using NAND gates.			2
4.	Define prime implicants and essential prime implicants.			2
5.	Design a full adder using full adders and other logic gate	s.		3
6.	Distinguish between a combinational logic circuit and sec	quential logic	circuit.	3
7.	Distinguish between a latch and flipflop.			2
8.	Compare the performance of sequential synchronous cir sequential circuits.	rali peliki a parabuk s	chronous	3
9.	Give the block diagram of a 8 bit shift register with serial i	n serial out an	d parallel in	3
10.	State the conditions for a function to be symmetric.			2
(This	s paper contains 2 pages)		РТ (7

Code No.: 6207

- 11. a) Given that $R = P\overline{Q} + \overline{P}Q$, prove that $P = Q\overline{R} + \overline{Q}R$.
 - b) Implement $Q = R = P\overline{Q} + \overline{PQ} + S$ using NAND gates.
 - c) Explain with an example, the corrections used in BCD addition.

3+3+4

- 12. a) Give a circuit for the generation of odd parity of 8 bit character and explain its operation.
 - b) Simplify $F(A,B,C,D,E) = \sum (2,3,7,9,11,18,23,31)$ using karmaugh map method. 3+7
- 13. a) Design a BCD to decimal decoder using only NAND gates.
 - b) Give the truth table of a full subtractor. Design a suitable circuit using only NOR gates.

5+5

- 14. a) Given a SR flipflop(s), design a JK flipflop, D flipflop and T flipflop using only SR flipflops.
 - b) Distinguish between synchronous and asychronous logic circuits.

8+2

15. a) Determine whether the following function is symmetric? Identify its number and variables of symmetry.

$$f(A,B,C) = \sum (0,2,3,4,5,7)$$

- b) What do you understand by a hazard in a contact network? Explain with an example.

 6+4
- 16. Using tabulation method, generate a set of prime implicants and find all minimal expressions for the following function.

$$f(P,Q,R,S,T) = \sum m(0,1,3,8,9,13,14,15,16,17,19,24,25,27,31)$$

10

10

- 17. Write short notes on the following:
 - a) Serial in parallel out shift register
 - b) ASCII character set
 - c) Binary multiplier (two bit)