



Code No.: 6209

## FACULTY OF ENGINEERING

## B.E. 2/4 (CSE) I Semester (Supplementary) Examination, July 2010 BASIC ELECTRONICS

Time: 3 Hours] [Max. Marks: 75 Note: Answer all questions from Part A. Answer five questions from Part B. PART - A 25 1. What is diffusion current? 3 2. What are the doping levels of a zener diode? 2 3. Differentiate between an FET and a BJT. 3 4. What is Hall effect? 2 5. How does the gain of an amplifier vary with feedback? 3 6. Explain Barkhausen criteria. 2 7. Draw the VI characteristics of a DIAC. 3 8. Mention the ideal characteristics of an ideal op amp. Page Indi 9. What is Early Effect? 3 10. Enlist the various applications of CRO. 2 PART - B 50 11. a) Explain the Energy band diagram and Fermi level of an intrinsic and extrinsic semiconductor. b) With neat sketches, explain the operation of a rectifier with capacitor filter. 12. a) Explain the construction and operation of a JFET. Derive the relationship between  $\mu$ , gm and  $r_d$ . b) Draw the circuit of the common emitter and explain its n-parameter model.

Code No.: 6209



- 13. a) Explain the operation of series and shunt regulators.
  - b) Explain the operation of a simple inverter circuit.
- 14. a) What are the advantages of negative feedback?
  - b) Compare between oscillator types.
- 15. a) Draw the functional block diagram of an op-Amp and explain the function of each block.

death, on the loss of the transfer of the latter of the

- b) What are the basic logic gates? Explain with truth tables.
- 16. a) Explain the working of a UJT. What is intrinsic stand off ratio?
  - b) Draw a neat labelled diagram of a CRO.
- 17. Write notes on:
  - a) TRIAC
  - b) Differentiator.

700

on spot apartitions to the source of the same of the s