

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) What is meant by the term "Non-Newtonian"? What types of substance exhibit this behaviour? Describe about the "cone-and-plate viscometer". [7+8] b) 2.a) Discuss about the equation of motion. Define the terms 'friction factor' and 'drag coefficient'. b) [9+6] Compare Fourier's law of heat conduction with Newton's law of viscosity? 3.a) Discuss the effect of T and P on thermal conductivity of gasses and liquids. b) [7+8] 4. Derive the temperature distribution in a semi-infinite slab. [15] 5. Write short notes on the following: a) Boundary layer theory b) Film theory c) Role of diffusion in bioprocessing [15] 6. Estimate the rate of absorption of CO₂ into a water film flowing down a vertical wall 1m long at the rate of 0.05 kg/s per meter of width at 25° C. The gas is pure CO_2 at 1 std atm. The water is essentially CO_2 -free initially. The solubility of CO_2 in water at 25°C, 1 std atm, is $C_{Ai} = 0.0336 \text{ kmol/m}^3$, $\mu = 8.9 \text{ x} 10^{-4} \text{ kg/ms}$, $D_{AB} =$

[15]

7.a) Write some applications of mass transfer in bioprocessing.
b) Explain the process of mass transfer by convection. [8+7]
8. Discuss the following

a) Oxygen uptake in cell cultures b) antifoam agents
[8+7]

 $1.96 \times 10^{-9} \text{ m}^2/\text{s}$, solution density = 998 kg/m³, $\Gamma = 0.05$ kg/ms, L = 1m.

--00000--

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) b)	What is Newton's law of viscosity? Explain How does the viscosity vary with T and P for dilute gases and liquids?	[6+9]
2.	Derive the equations for friction factor in packed columns?	[15]
3.a) b)	Describe the analogy between heat and momentum transfer? Compare the temperature dependence of thermal conductivity for gases and solid.	, liquids [7+8]
4.	Derive the temperature distribution in a semi- infinite and finite slab.	[15]
5.a)	Compare Fick's law of diffusion with Newton's law of viscosity and l thermal conductivity. To what extent are these three relations analogous?	Fourier's
b)	Discuss the role of diffusion in bioprocessing.	[8+7]
6.	Describe about boundary layer theory and penetration theory.	[15]
7.a) b)	Explain the process of mass transfer by convection. Write short notes on liquid- solid mass transfer.	[7+8]
8.	Describe about the following.	
	a) Oxygen balance method	
	b) Oxygen transfer in fermentor	[7+8]

--00000--

SET-3

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- 1.a) How do you measure the viscosity using coaxial cylinder rotary viscometer.
- b) Discuss about the rheological properties of fermentation broth. [7+8]
- 2. Derive the equations for friction factor when the fluid is flowing in tubes. [15]
- 3. A plastic panel of area A=900 cm² and thickness Y=0.6cm was found to conduct heat at a rate of 3.5 watts at steady state with temperatures of $T_0 = 25^{\circ}C$ and $T_1=25^{\circ}C$ on the two main surfaces. What is the thermal conductivity of the plastic in cal/m sec K? [15]
- 4. Derive the temperature distribution in a Stirred Tank Reactor when the flow is turbulent. [15]
- 5.a) Discuss about boundary layer theory and film theory
- b) What does the Corrsin equation describe? [8+7]
- 6.a) Define mass transfer coefficient and derive the equations to calculate mass transfer coefficient
- b) Discuss about penetration theory. [7+8]
- 7.a) What are the various correlations for evaluating mass transfer coefficient?
- b) Write short notes on liquid- liquid mass transfer? [7+8]
- 8.a) What are the factors affecting cellular oxygen demand ? Explain
- b) Discuss about oxygen uptake in cell cultures. [8+7]

--00000---

Time: 3 hours

Max. Marks: 75

[10+5]

Answer any five questions All questions carry equal marks

- 1.a) Discuss about impeller viscometer.
- b) What is meant by the term "Non-Newtonian"? What types of substance exhibit this behavior? [8+7]
- 2.a) Give the physical significance of the three derivatives *in which T is the local fluid temperature*.
- b) What is continuity equation? Explain.
- 3. A plastic panel of area A=929 cm² and thickness Y=0.64 cm was found to conduct heat at a rate of 3 watts at steady state with temperatures of $T_0 = 24^{0}$ C and $T_1 = 26^{0}$ C on the two main surfaces. What is the thermal conductivity of the plastic in cal/m sec K? [15]
- 4. Derive the temperature distribution for a Stirred Tank Reactor and discuss the relationship between cell concentrations & stirred conditions. [15]
- 5.a) What is diffusion? What factors may cause diffusion to occur?
- b) Discuss the analogy between mass, heat and momentum transfer. [7+8]
- 6.a) Discuss about penetration theory.
- b) In an aerobic fermentation process, the typical average bubble diameter is 3 mm, with an average raise velocity of 18 cm/s. If the diffusivity coefficient is $8 \times 10^{-10} \text{ m}^2/\text{s}$, find the mass transfer coefficient on the basis of penetration theory. [5+10]
- 7.a) Write some applications of mass transfer in bioprocessing.
- b) Write short notes on gas- liquid mass transfer. [8+7]
- 8.a) Discuss about the measurements of k_{La} using dynamic method.
- b) What are the factors affecting cellular oxygen demand? Explain. [8+7]