

B. Tech III Year I Semester Examinations, December-2011 ELECTRICAL MEASUREMENTS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) Draw the sketch and explain the principle of PMMC and moving iron type instruments. Derive the expression for deflecting Torques Td. What are the materials used for construction?
 - b) An ammeter has a range of 100 μ A. Meter resistance $R_m = 900 \Omega$. The range is to be extended to 100mA and 10A. Find the values of R_{SG} . [16]
- 2.a) Draw the schematic of Electrostatic Voltmeters and explain the principle of working.
 - b) A current meter has an internal resistance of 80Ω . It is used to measure the current through a resistance R_{C} , which is in shunt with another resistance $R_{b} = 1.5 K\Omega$. A resistance R_{A} is in series and its value is $1K\Omega$. The supply voltage is 3V. Draw the circuit and determines the % error in current reading due to loading effect of ammeter. [16]
- 3.a) Explain about the constructional features and principles of current transformers and potential Transformers.
 - b) Draw the sketch of Dynamometer type wattmeter and explain the principle and working of the instrument. [16]
- 4.a) Explain how the range of wattmeter can be extended using instrument transformers.
 - b) Draw the circuit and explain the principle of three phase energy meter. [16]
- 5.a) Explain about Weston type of Frequency Meter, giving the constructional features.
- b) What are the specifications of A.C and D.C potentiometers? Give typical values.

[16]

- 6.a) Draw the circuit Kelvin's double bridge and derive the expression for unknown resistance R_{x} . What are the salient features of this bridge circuit?
- b) Draw the circuit for Anderson's bridge and derive the expression for unknown elements. [16]
- 7.a) Draw the Maxwell's bridge circuit and derive the expression for the unknown element at balance.
- b) An A.C bridge has the following elements: Arm AB: $R_1 = 800\Omega$, $G = 0.4 \mu$ F. Arm BC: $R_2 = 500\Omega$, $C_2 = 1 \mu$ F. Elements in arm AB are in parallel. Elements In arm BC are in series. Arm CB: $R_3 = 1.2K\Omega$. Arm AD has unknown resistance R_x with usual notation. Find the value of R_x and the frequency at which the bridge is in balance. [16]
- 8. Write Notes on any TWO:
 a) Ballistic galvanometer
 b) Magnetic potentiometer
 c) Silsbee's method Testing of CTS.

[16]

--00000--

RR

B. Tech III Year I Semester Examinations, December-2011 ELECTRICAL MEASUREMENTS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) Explain about the constructional features and principles of current transformers and potential Transformers.
 - c) Draw the sketch of Dynamometer type wattmeter and explain the principle and working of the instrument. [16]
- 2.a) Explain how the range of wattmeter can be extended using instrument transformers.
 - b) Draw the circuit and explain the principle of three phase energy meter. [16]
- 3.a) Explain about Weston type of Frequency Meter, giving the constructional features.
 - b) What are the specifications of A.C and D.C potentiometers? Give typical values.

[16]

- 4.a) Draw the circuit Kelvin's double bridge and derive the expression for unknown resistance R_{x} . What are the salient features of this bridge circuit?
 - b) Draw the circuit for Anderson's bridge and derive the expression for unknown elements. [16]
- 5.a) Draw the Maxwell's bridge circuit and derive the expression for the unknown element at balance.
- b) An A.C bridge has the following elements: Arm AB: $R_1 = 800\Omega$, $G = 0.4 \mu$ F. Arm BC: $R_2 = 500\Omega$, $C_2 = 1 \mu$ F. Elements in arm AB are in parallel. Elements In arm BC are in series. Arm CB: $R_3 = 1.2K\Omega$. Arm AD has unknown resistance R_x with usual notation. Find the value of R_x and the frequency at which the bridge is in balance. [16]
- 6. Write Notes on any TWO:
 a) Ballistic galvanometer
 b) Magnetic potentiometer
 c) Silsbee's method Testing of CTS. [16]
- 7.a) Draw the sketch and explain the principle of PMMC and moving iron type instruments. Derive the expression for deflecting Torques Td. What are the materials used for construction?
 - b) An ammeter has a range of 100 μ A. Meter resistance $R_m = 900 \Omega$. The range is to be extended to 100mA and 10A. Find the values of R_{SG} . [16]
- 8.a) Draw the schematic of Electrostatic Voltmeters and explain the principle of working.
- b) A current meter has an internal resistance of 80Ω . It is used to measure the current through a resistance R_{c} , which is in shunt with another resistance $R_{b} = 1.5 K\Omega$. A resistance R_{A} is in series and its value is $1K\Omega$. The supply voltage is 3V. Draw the circuit and determines the % error in current reading due to loading effect of ammeter. [16]

B. Tech III Year I Semester Examinations, December-2011 ELECTRICAL MEASUREMENTS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) Explain about Weston type of Frequency Meter, giving the constructional features.
 - b) What are the specifications of A.C and D.C potentiometers? Give typical values.

[16]

- 2.a) Draw the circuit Kelvin's double bridge and derive the expression for unknown resistance R_{x} . What are the salient features of this bridge circuit?
 - b) Draw the circuit for Anderson's bridge and derive the expression for unknown elements. [16]
- 3.a) Draw the Maxwell's bridge circuit and derive the expression for the unknown element at balance.
 - b) An A.C bridge has the following elements: Arm AB: $R_1 = 800\Omega$, $G = 0.4 \mu$ F. Arm BC: $R_2 = 500\Omega$, $C_2 = 1 \mu$ F. Elements in arm AB are in parallel. Elements In arm BC are in series. Arm CB: $R_3 = 1.2K\Omega$. Arm AD has unknown resistance R_x with usual notation. Find the value of R_x and the frequency at which the bridge is in balance. [16]
- 4. Write Notes on any TWO:
 a) Ballistic galvanometer
 b) Magnetic potentiometer
 c) Silsbee's method Testing of CTS. [16]
- 5.a) Draw the sketch and explain the principle of PMMC and moving iron type instruments. Derive the expression for deflecting Torques Td. What are the materials used for construction?
 - b) An ammeter has a range of 100 μ A. Meter resistance $R_m = 900 \Omega$. The range is to be extended to 100mA and 10A. Find the values of R_{SG} . [16]
- 6.a) Draw the schematic of Electrostatic Voltmeters and explain the principle of working.
 - b) A current meter has an internal resistance of 80Ω . It is used to measure the current through a resistance R_{C} , which is in shunt with another resistance $R_{b} = -1.5 K \Omega$. A resistance R_{A} is in series and its value is $1 K \Omega$. The supply voltage is 3V. Draw the circuit and determines the % error in current reading due to loading effect of ammeter. [16]
- 7.a) Explain about the constructional features and principles of current transformers and potential Transformers.
 - d) Draw the sketch of Dynamometer type wattmeter and explain the principle and working of the instrument. [16]
- 8.a) Explain how the range of wattmeter can be extended using instrument transformers.
 - b) Draw the circuit and explain the principle of three phase energy meter. [16]

--00000--

B. Tech III Year I Semester Examinations, December-2011 ELECTRICAL MEASUREMENTS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) Draw the Maxwell's bridge circuit and derive the expression for the unknown element at balance.
- b) An A.C bridge has the following elements: Arm AB: $R_1 = 800 \Omega$, $G = 0.4 \mu$ F. Arm BC: $R_2 = 500 \Omega$, $C_2 = 1 \mu$ F. Elements in arm AB are in parallel. Elements In arm BC are in series. Arm CB: $R_3 = 1.2K\Omega$. Arm AD has unknown resistance R_x with usual notation. Find the value of R_x and the frequency at which the bridge is in balance. [16]
- 2. Write Notes on any TWO:
 a) Ballistic galvanometer
 b) Magnetic potentiometer
 c) Silsbee's method Testing of CTS. [16]
- 3.a) Draw the sketch and explain the principle of PMMC and moving iron type instruments. Derive the expression for deflecting Torques Td. What are the materials used for construction?
 - b) An ammeter has a range of 100 μ A. Meter resistance $R_m = 900 \Omega$. The range is to be extended to 100mA and 10A. Find the values of R_{SG} . [16]
- 4.a) Draw the schematic of Electrostatic Voltmeters and explain the principle of working.
- b) A current meter has an internal resistance of 80Ω . It is used to measure the current through a resistance R_{C} , which is in shunt with another resistance $R_{b} = -1.5 K\Omega$. A resistance R_{A} is in series and its value is $1K\Omega$. The supply voltage is 3V. Draw the circuit and determines the % error in current reading due to loading effect of ammeter. [16]
- 5.a) Explain about the constructional features and principles of current transformers and potential Transformers.
 - e) Draw the sketch of Dynamometer type wattmeter and explain the principle and working of the instrument. [16]
- 6.a) Explain how the range of wattmeter can be extended using instrument transformers.
 - b) Draw the circuit and explain the principle of three phase energy meter. [16]
- 7.a) Explain about Weston type of Frequency Meter, giving the constructional features.
 - b) What are the specifications of A.C and D.C potentiometers? Give typical values.

[16]

- 8.a) Draw the circuit Kelvin's double bridge and derive the expression for unknown resistance R_{x} . What are the salient features of this bridge circuit?
 - b) Draw the circuit for Anderson's bridge and derive the expression for unknown elements. [16]

--00000--