B. Tech III Year I Semester Examinations, December - 2011
 HEAT TRANSFER (CHEMICAL ENGINEERING)

Time: 3 hours
Max. Marks: 80

Answer any five questions All questions carry equal marks

1. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall. [16]
2. Steam at $300^{\circ} \mathrm{C}$ flows in a stainless steel pipe of thermal conductivity $30 \mathrm{~W} / \mathrm{mK}$ whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity $0.038 \mathrm{~W} / \mathrm{mK}$. Heat is lost to the surroundings at $20^{\circ} \mathrm{C}$ by convection and radiation with a combined heat transfer coefficient of $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Taking the inside heat transfer coefficient as $80 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, calculate the heat lost per metre length of the pipe.
3.a) Distinguish between steady state conduction and unsteady state conduction.
b) A 3 cm diameter aluminium sphere of thermal conductivity $204 \mathrm{~W} / \mathrm{mK}$, density $2700 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat $0.896 \mathrm{KJ} / \mathrm{kgK}$ is initially at $175^{\circ} \mathrm{C}$. It is suddenly immersed in a well-stirred fluid at $25^{\circ} \mathrm{C}$. The temperature of the sphere is lowered to $100^{\circ} \mathrm{C}$ in 42 sec . Calculate the heat transfer coefficient.
4.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of $1 \mathrm{~m} / \mathrm{sec}$. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury. Density $=12,870 \mathrm{Kg} / \mathrm{m}^{3}$, Viscosity $=0.000863 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ Specific heat $=0.134 \mathrm{KJ} / \mathrm{KgK}$, Thermal conductivity $=14 \mathrm{~W} / \mathrm{mK}$.
5.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
b) Air at 1 atm and $27^{0} \mathrm{C}$ flows across a cylinder of 2.5 cm diameter with a velocity of $30 \mathrm{~m} / \mathrm{sec}$. The cylinder surface is maintained at $120^{\circ} \mathrm{C}$. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm, what is the heat transfer?
6.a) Define Rayleigh number and explain its significance in natural convection.
b) A vertical plate of 0.3 m height and 0.1 m width maintained at a uniform temperature of $80^{\circ} \mathrm{C}$ is exposed to ambient air at $25^{\circ} \mathrm{C}$. Calculate the heat lost from the plate.
7.a) Compare horizontal and vertical condensation.
b) Describe horizontal tube evaporator with a neat sketch.
8.a) Explain how good emitters can be treated as good absorbers.
b) A black solid cylinder of emissivity 0.95 and at $100^{\circ} \mathrm{C}$ is kept concentrically in a large cylinder maintained at $30^{\circ} \mathrm{C}$, having emissivity 0.2 . Calculate the radiation heat exchange between two surfaces per m^{2} area.
[8+8]

B. Tech III Year I Semester Examinations, December - 2011
 HEAT TRANSFER (CHEMICAL ENGINEERING)

Max. Marks: 80

Answer any five questions
 All questions carry equal marks

1.a) Distinguish between steady state conduction and unsteady state conduction.
b) A 3 cm diameter aluminium sphere of thermal conductivity $204 \mathrm{~W} / \mathrm{mK}$, density $2700 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat $0.896 \mathrm{KJ} / \mathrm{kgK}$ is initially at $175^{\circ} \mathrm{C}$. It is suddenly immersed in a well-stirred fluid at $25^{\circ} \mathrm{C}$. The temperature of the sphere is lowered to $100^{\circ} \mathrm{C}$ in 42 sec . Calculate the heat transfer coefficient.
2.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of $1 \mathrm{~m} / \mathrm{sec}$. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury. Density $=12,870 \mathrm{Kg} / \mathrm{m}^{3}$, Viscosity $=0.000863 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ Specific heat $=0.134 \mathrm{KJ} / \mathrm{KgK}$, Thermal conductivity $=14 \mathrm{~W} / \mathrm{mK}$.
3.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
b) Air at 1 atm and $27^{0} \mathrm{C}$ flows across a cylinder of 2.5 cm diameter with a velocity of $30 \mathrm{~m} / \mathrm{sec}$. The cylinder surface is maintained at $120^{\circ} \mathrm{C}$. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm, what is the heat transfer?
[8+8]
4.a) Define Rayleigh number and explain its significance in natural convection.
b) A vertical plate of 0.3 m height and 0.1 m width maintained at a uniform temperature of $80^{\circ} \mathrm{C}$ is exposed to ambient air at $25^{\circ} \mathrm{C}$. Calculate the heat lost from the plate.
5.a) Compare horizontal and vertical condensation.
b) Describe horizontal tube evaporator with a neat sketch.
6.a) Explain how good emitters can be treated as good absorbers.
b) A black solid cylinder of emissivity 0.95 and at $100^{\circ} \mathrm{C}$ is kept concentrically in a large cylinder maintained at $30^{\circ} \mathrm{C}$, having emissivity 0.2 . Calculate the radiation heat exchange between two surfaces per m^{2} area.
7. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall. [16]
8. Steam at $300^{\circ} \mathrm{C}$ flows in a stainless steel pipe of thermal conductivity $30 \mathrm{~W} / \mathrm{mK}$ whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity $0.038 \mathrm{~W} / \mathrm{mK}$. Heat is lost to the surroundings at $20^{\circ} \mathrm{C}$ by convection and radiation with a combined heat transfer coefficient of $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Taking the inside heat transfer coefficient as $80 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, calculate the heat lost per metre length of the pipe.
[16]

B. Tech III Year I Semester Examinations, December - 2011
 HEAT TRANSFER (CHEMICAL ENGINEERING)

Time: 3 hours
Max. Marks: 80

Answer any five questions

All questions carry equal marks
1.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
b) Air at 1atm and $27^{0} \mathrm{C}$ flows across a cylinder of 2.5 cm diameter with a velocity of $30 \mathrm{~m} / \mathrm{sec}$. The cylinder surface is maintained at $120^{\circ} \mathrm{C}$. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm, what is the heat transfer?
2.a) Define Rayleigh number and explain its significance in natural convection.
b) A vertical plate of 0.3 m height and 0.1 m width maintained at a uniform temperature of $80^{\circ} \mathrm{C}$ is exposed to ambient air at $25^{\circ} \mathrm{C}$. Calculate the heat lost from the plate.
[8+8]
3.a) Compare horizontal and vertical condensation.
b) Describe horizontal tube evaporator with a neat sketch.
4.a) Explain how good emitters can be treated as good absorbers.
b) A black solid cylinder of emissivity 0.95 and at $100^{\circ} \mathrm{C}$ is kept concentrically in a large cylinder maintained at $30^{\circ} \mathrm{C}$, having emissivity 0.2 . Calculate the radiation heat exchange between two surfaces per m^{2} area.
[8+8]
5. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall.
6. Steam at $300^{\circ} \mathrm{C}$ flows in a stainless steel pipe of thermal conductivity $30 \mathrm{~W} / \mathrm{mK}$ whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity $0.038 \mathrm{~W} / \mathrm{mK}$. Heat is lost to the surroundings at $20^{\circ} \mathrm{C}$ by convection and radiation with a combined heat transfer coefficient of $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Taking the inside heat transfer coefficient as $80 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, calculate the heat lost per metre length of the pipe.
7.a) Distinguish between steady state conduction and unsteady state conduction.
b) A 3 cm diameter aluminium sphere of thermal conductivity $204 \mathrm{~W} / \mathrm{mK}$, density $2700 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat $0.896 \mathrm{KJ} / \mathrm{kgK}$ is initially at $175^{\circ} \mathrm{C}$. It is suddenly immersed in a well-stirred fluid at $25^{\circ} \mathrm{C}$. The temperature of the sphere is lowered to $100^{\circ} \mathrm{C}$ in 42 sec . Calculate the heat transfer coefficient.
8.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of $1 \mathrm{~m} / \mathrm{sec}$. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury. Density $=12,870 \mathrm{Kg} / \mathrm{m}^{3}$, Viscosity $=0.000863 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$
Specific heat $=0.134 \mathrm{KJ} / \mathrm{KgK}$, Thermal conductivity $=14 \mathrm{~W} / \mathrm{mK}$.

B. Tech III Year I Semester Examinations, December - 2011
 HEAT TRANSFER (CHEMICAL ENGINEERING)

Time: 3 hours
Max. Marks: 80

Answer any five questions
 All questions carry equal marks

1.a) Compare horizontal and vertical condensation.
b) Describe horizontal tube evaporator with a neat sketch.
2.a) Explain how good emitters can be treated as good absorbers.
b) A black solid cylinder of emissivity 0.95 and at $100^{\circ} \mathrm{C}$ is kept concentrically in a large cylinder maintained at $30^{\circ} \mathrm{C}$, having emissivity 0.2 . Calculate the radiation heat exchange between two surfaces per m^{2} area.
3. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall. [16]
4. Steam at $300^{\circ} \mathrm{C}$ flows in a stainless steel pipe of thermal conductivity $30 \mathrm{~W} / \mathrm{mK}$ whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity $0.038 \mathrm{~W} / \mathrm{mK}$. Heat is lost to the surroundings at $20^{\circ} \mathrm{C}$ by convection and radiation with a combined heat transfer coefficient of $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Taking the inside heat transfer coefficient as $80 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, calculate the heat lost per metre length of the pipe.
5.a) Distinguish between steady state conduction and unsteady state conduction.
b) A 3 cm diameter aluminium sphere of thermal conductivity $204 \mathrm{~W} / \mathrm{mK}$, density $2700 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat $0.896 \mathrm{KJ} / \mathrm{kgK}$ is initially at $175^{\circ} \mathrm{C}$. It is suddenly immersed in a well-stirred fluid at $25^{\circ} \mathrm{C}$. The temperature of the sphere is lowered to $100^{\circ} \mathrm{C}$ in 42 sec . Calculate the heat transfer coefficient.
6.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of $1 \mathrm{~m} / \mathrm{sec}$. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury.

$$
\begin{equation*}
\text { Density }=12,870 \mathrm{Kg} / \mathrm{m}^{3} \text {, Viscosity }=0.000863 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2} \tag{8+8}
\end{equation*}
$$

Specific heat $=0.134 \mathrm{KJ} / \mathrm{KgK}$, Thermal conductivity $=14 \mathrm{~W} / \mathrm{mK}$.
7.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
b) Air at 1atm and $27^{\circ} \mathrm{C}$ flows across a cylinder of 2.5 cm diameter with a velocity of $30 \mathrm{~m} / \mathrm{sec}$. The cylinder surface is maintained at $120^{\circ} \mathrm{C}$. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm , what is the heat transfer?
[8+8]
8.a) Define Rayleigh number and explain its significance in natural convection.
b) A vertical plate of 0.3 m height and 0.1 m width maintained at a uniform temperature of $80^{\circ} \mathrm{C}$ is exposed to ambient air at $25^{\circ} \mathrm{C}$. Calculate the heat lost from the plate.
[8+8]

