

Time: 3 hours

Max. Marks: 80

- 1. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall. [16]
- 2. Steam at 300° C flows in a stainless steel pipe of thermal conductivity 30 W/mK whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity 0.038W/mK. Heat is lost to the surroundings at 20° C by convection and radiation with a combined heat transfer coefficient of 15W/m²K. Taking the inside heat transfer coefficient as 80W/m²K, calculate the heat lost per metre length of the pipe. [16]
- 3.a) Distinguish between steady state conduction and unsteady state conduction.
- b) A 3cm diameter aluminium sphere of thermal conductivity 204 W/mK, density 2700 kg/m³, specific heat 0.896 KJ/kgK is initially at 175° C. It is suddenly immersed in a well-stirred fluid at 25° C. The temperature of the sphere is lowered to 100° C in 42 sec. Calculate the heat transfer coefficient. [16]
- 4.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
 - b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of 1 m/sec. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury. Density = 12,870 Kg/m³, Viscosity = 0.000863 N-s/m²
 Specific heat = 0.134 KJ/KgK, Thermal conductivity = 14W/mK. [8+8]
- 5.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
 - b) Air at 1atm and 27°C flows across a cylinder of 2.5cm diameter with a velocity of 30m/sec. The cylinder surface is maintained at 120°C. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm, what is the heat transfer? [8+8]
- 6.a) Define Rayleigh number and explain its significance in natural convection.
- b) A vertical plate of 0.3m height and 0.1m width maintained at a uniform temperature of 80° C is exposed to ambient air at 25° C. Calculate the heat lost from the plate. [8+8]
- 7.a) Compare horizontal and vertical condensation.
- b) Describe horizontal tube evaporator with a neat sketch. [8+8]
- 8.a) Explain how good emitters can be treated as good absorbers.
- b) A black solid cylinder of emissivity 0.95 and at 100° C is kept concentrically in a large cylinder maintained at 30° C, having emissivity 0.2. Calculate the radiation heat exchange between two surfaces per m² area. [8+8]

Time: 3 hours

Max. Marks: 80

- 1.a) Distinguish between steady state conduction and unsteady state conduction.
- b) A 3cm diameter aluminium sphere of thermal conductivity 204 W/mK, density 2700 kg/m³, specific heat 0.896 KJ/kgK is initially at 175° C. It is suddenly immersed in a well-stirred fluid at 25° C. The temperature of the sphere is lowered to 100° C in 42 sec. Calculate the heat transfer coefficient. [16]
- 2.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
 - b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of 1 m/sec. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury. Density = $12,870 \text{ Kg/m}^3$, Viscosity = 0.000863 N-s/m^2 Specific heat = 0.134 KJ/KgK, Thermal conductivity = 14W/mK. [8+8]
- 3.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
 - b) Air at 1atm and 27^oC flows across a cylinder of 2.5cm diameter with a velocity of 30m/sec. The cylinder surface is maintained at 120^oC. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm, what is the heat transfer? [8+8]
- 4.a) Define Rayleigh number and explain its significance in natural convection.
- b) A vertical plate of 0.3m height and 0.1m width maintained at a uniform temperature of 80° C is exposed to ambient air at 25° C. Calculate the heat lost from the plate. [8+8]
- 5.a) Compare horizontal and vertical condensation.b) Describe horizontal tube evaporator with a neat sketch. [8+8]
- 6.a) Explain how good emitters can be treated as good absorbers.
- b) A black solid cylinder of emissivity 0.95 and at 100° C is kept concentrically in a large cylinder maintained at 30° C, having emissivity 0.2. Calculate the radiation heat exchange between two surfaces per m² area. [8+8]
- 7. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall. [16]
- 8. Steam at 300^oC flows in a stainless steel pipe of thermal conductivity 30 W/mK whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity 0.038W/mK. Heat is lost to the surroundings at 20^oC by convection and radiation with a combined heat transfer coefficient of 15W/m²K. Taking the inside heat transfer coefficient as 80W/m²K, calculate the heat lost per metre length of the pipe. [16]

Time: 3 hours

Max. Marks: 80

- 1.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
- b) Air at 1atm and 27°C flows across a cylinder of 2.5cm diameter with a velocity of 30m/sec. The cylinder surface is maintained at 120°C. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm, what is the heat transfer? [8+8]
- 2.a) Define Rayleigh number and explain its significance in natural convection.
- b) A vertical plate of 0.3m height and 0.1m width maintained at a uniform temperature of 80° C is exposed to ambient air at 25° C. Calculate the heat lost from the plate. [8+8]
- 3.a) Compare horizontal and vertical condensation.
- b) Describe horizontal tube evaporator with a neat sketch. [8+8]
- 4.a) Explain how good emitters can be treated as good absorbers.
- b) A black solid cylinder of emissivity 0.95 and at 100° C is kept concentrically in a large cylinder maintained at 30° C, having emissivity 0.2. Calculate the radiation heat exchange between two surfaces per m² area. [8+8]
- 5. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall. [16]
- 6. Steam at 300° C flows in a stainless steel pipe of thermal conductivity 30 W/mK whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity 0.038W/mK. Heat is lost to the surroundings at 20° C by convection and radiation with a combined heat transfer coefficient of 15W/m²K. Taking the inside heat transfer coefficient as 80W/m²K, calculate the heat lost per metre length of the pipe. [16]
- 7.a) Distinguish between steady state conduction and unsteady state conduction.
- b) A 3cm diameter aluminium sphere of thermal conductivity 204 W/mK, density 2700 kg/m³, specific heat 0.896 KJ/kgK is initially at 175° C. It is suddenly immersed in a well-stirred fluid at 25° C. The temperature of the sphere is lowered to 100° C in 42 sec. Calculate the heat transfer coefficient. [16]
- 8.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
- b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of 1 m/sec. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury. Density = 12,870 Kg/m³, Viscosity = 0.000863 N-s/m²
 Specific heat = 0.134 KJ/KgK, Thermal conductivity = 14W/mK. [8+8]

Time: 3 hours

Max. Marks: 80

- 1.a) Compare horizontal and vertical condensation.
- b) Describe horizontal tube evaporator with a neat sketch. [8+8]
- 2.a) Explain how good emitters can be treated as good absorbers.
- b) A black solid cylinder of emissivity 0.95 and at 100° C is kept concentrically in a large cylinder maintained at 30° C, having emissivity 0.2. Calculate the radiation heat exchange between two surfaces per m² area. [8+8]
- 3. Derive the general heat conduction equation in Cartesian system and hence deduce the expression for temperature distribution through a plane wall. [16]
- 4. Steam at 300[°]C flows in a stainless steel pipe of thermal conductivity 30 W/mK whose inner and outer diameters are 5 cm and 5.5 cm respectively. The pipe is covered with 5 cm thick glass wool of thermal conductivity 0.038W/mK. Heat is lost to the surroundings at 20[°]C by convection and radiation with a combined heat transfer coefficient of 15W/m²K. Taking the inside heat transfer coefficient as 80W/m²K, calculate the heat lost per metre length of the pipe. [16]
- 5.a) Distinguish between steady state conduction and unsteady state conduction.
- b) A 3cm diameter aluminium sphere of thermal conductivity 204 W/mK, density 2700 kg/m³, specific heat 0.896 KJ/kgK is initially at 175° C. It is suddenly immersed in a well-stirred fluid at 25° C. The temperature of the sphere is lowered to 100° C in 42 sec. Calculate the heat transfer coefficient. [16]
- 6.a) What is entrance length and how do you find it for laminar and turbulent flow conditions through a tube.
 - b) Liquid mercury flows through a long tube of 2.5 cm inner diameter with a velocity of 1 m/sec. Calculate the heat transfer coefficient for the constant wall temperature boundary condition. Assume the following properties for mercury. Density = $12,870 \text{ Kg/m}^3$, Viscosity = 0.000863 N-s/m^2 Specific heat = 0.134 KJ/KgK, Thermal conductivity = 14W/mK. [8+8]
- 7.a) What is the difference between heat transfer for liquid metal flow and ordinary fluids?
- b) Air at 1atm and 27^{0} C flows across a cylinder of 2.5cm diameter with a velocity of 30m/sec. The cylinder surface is maintained at 120^{0} C. Calculate the mean heat transfer coefficient and heat transfer rate per metre length of the cylinder. If the air pressure is 2 atm, what is the heat transfer? [8+8]
- 8.a) Define Rayleigh number and explain its significance in natural convection.
- b) A vertical plate of 0.3m height and 0.1m width maintained at a uniform temperature of 80° C is exposed to ambient air at 25° C. Calculate the heat lost from the plate. [8+8]