	WEST BENGAL UNVERSITY OF TECHNOLOGY
\ \	Utech
Name :	A
Roll No. :	(Transmission)
Invitility of Cinestone	O'Constate for the

Invigilator's Signature :

CS/B.Tech (BT)/SEM-4/CHE-414/2010 2010 TRANSFER OPERATIONS – I

Time Allotted : 3 Hours

Full Marks : 70

[Turn over

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) Power Law behaviour of Newtonian Fluid is for
 - a) n = 1b) n = 0c) n < 1d) n > 1.
 - ii) Turbulent flow of Newtonian fluid in a circular tube
 - a) $N_{Re} < 1400$
 - b) $N_{Re} > 1400$
 - c) $N_{Re} < 2100$
 - d) $N_{Re} > 4000$.

CS/B Tech	(BT)/SEM-4/CHE-414/2010	
CO/D.1CCH	(D1)/(D2W-4)/(D1D-414)/2010	

Answer any *three* of the following.

GROUP – B

- Derive the relationship between the pressure drop and the 2.manometer reading for a *U*-tube manometer.
- Write down the Bernoulli's equation and state the 3. significance of each term. 2 + 3
- 4. Define free settling, hindered settling, terminal velocity, sphericity and minimum fluidization velocity.
- Calculate the LMTD of the following heat exchanger : 5.

Derive a relation between overall heat transfer 6. a) co-efficient and individual heat transfer co-efficient.

3 + 2

Define fouling factor. b)

- 7. a) Derive an expression for terminal-settling velocity of a spherical particle in a fluid medium under stokes law region.
 7
 - b) An hydrocarbon oil (molecular weight 220, density = 1.6 gm/cc, viscosity = 5 cP), is being pumped from the storage tank at ground floor to the top of the absorption column of height 10 m at the rate of 2000 kg/min through a 5 cm ID smooth polythene pipe. Assume an efficiency of 60%, calculate the power (kW) of the pumped employed. The loss due to valve and expansion may be taken as 1.5 (kgf) (m)/kg.

Take Fanning friction factor (f) = 16/*Re* for laminar flow = 0.08 (*Re*)^{-0.25} for turbulent flow. 7 + 8

- 8. a) Derive the equation for conductive heat flow through a hollow sphere. 7
 - b) A steam pipe line 150/160 mm in dia is covered with a layer of insulating material of thickness 50 mm. The thermal conductivity of the pipe is 50 W/m K and that of the insulating material is 0.04 W/mK. The temperature inside the pipe line is 100° C and that of the outside surface of the insulation is 40° C. Calculate the heat loss per 1 m length of the pipe line. 8

[Turn over

CS/B.Tech (BT)/SEM-4/CHE-414/2010

9. a) State the following :
i) Rittinger's law
ii) Kick's law
iii) Bond's law.

- b) What is meant by angle of nip in crushing rolls? 2
- c) In crushing a certain ore, the feed is such that 80% is less than 50.8 mm in size and the product size is such that 80% is less than 6.35 mm. The power required is 89.5 kW. What will be the power required using the same feed so that 80% is less than 3.18 mm? 7
- 10. a) Explain the operation of a fluidized bed. Give the industrial applications of fluidization. 6+2
 - b) A water softener consists of a vertical tube of 50 mm diameter and packed to a height of 0.5 m with ionexchange resin particles. The particles may be considered spherical with a diameter of 1.25 mm. Water flows over the bed because of gravity as well as a pressure difference at a rate of 300 ml/s. The bed has a porosity of 0.30. Calculate the pressure gradient. 7

- CS/B.Tech (BT)/SEM-4/CHE 414/2010 11. a) State the operating principle of ball mill. Derive the relationship between the critical speed of a ball mill with radius of balls & ball mills. 6
 - b) Describe the operating principle of Rotary drum vacuum filter with a neat sketch.
 - c) Derive the expression between Work index and Bond's constant. 5

[Turn over

4108