<u> </u>	(Unexan
Name:	A
Roll No.:	
Invigilator's Signature:	

2011 APPAREL PRODUCTION CONTROL

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Objective Type Questions)

1. Answer the following questions:

 $10 \times 1 = 10$

- A. Choose the correct alternatives for the following:
 - i) "SAM for Pocket attaching operation for style no. 0013/AP is 2 minutes." This statement indicates
 - a) minimum time required to attach one pocket for style no. 0013/AP = 2 minutes
 - b) maximum time required to attach one pocket for style no. 0013/AP = 2 minutes
 - c) average observed time for attaching one pocket for style no. 0013/AP = 2 minutes
 - d) allotted time estimated for attaching one pocket for style no. 0013/AP = 2 minutes.

5235 [Turn over

- ii) "Performance rating of a worker = 80%." This statement indicates
 - a) average working efficiency of that worker = 80%
 - b) that worker can perform 80% of the standard performance.
 - c) maximum working efficiency of that worker = 80%
 - d) that worker can perform 80% of the most efficient worker in that factory.
- iii) Which of the following control charts is useful to optimize machine-wise manpower allocation?
 - a) Two handed Process Chart
 - b) Multiple Activity Chart
 - c) Operation Process Chart
 - d) Flow Process Chart.
- iv) Flow Process Chart is a useful tool for
 - a) Production Calculation
 - b) Production Control
 - c) Production Planning
 - d) Lay Lot Planning.
- v) Which of the following parameters is not required for calculating manpower requirement for a process in sewing department?
 - a) SAM

- b) Performance rating %
- c) Absenteeism %
- d) Fabric consumption.

- vi) Which of the following parameters influences Lay lot planning most significantly?
 - a) Marker
 - b) Fabric colour
 - c) Total number of fabric rolls available
 - d) All of these.
- vii) In an Apparel factory with computerized sewing machine and effective ERP system, which of the following productivity calculation systems is the most suitable one?
 - a) Operator productivity b) Labour productivity
 - c) Machine productivity d) none of these.
- B. Answer the following questions very briefly:
 - viii) Mention one example each for 'Make Through Process' and 'Progressive Bundling Process' of Apparel Manufacturing.
 - ix) Write the full forms of AOA and AON.
 - x) Mention any three activities to improve productivity in sewing department.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Write short notes on the following:
 - a) Skill inventory in the context of manpower allocation in sewing department
 - b) Fashion calendar for product development.

 $2\frac{1}{2} + 2\frac{1}{2}$

3. Details of an order of 2500 pcs Men's Trousers are as given below:

Date of Order Confirmation : 22nd November, 2011
Date of Delivery : 20th December, 2011

Style No. : AD/M/013

Colour No. : Pantone-IP00027.

Total Number of Pcs ordered: 2500

Standard time required

For Faibric sourcing: 7 days
For Fabric inspection: 6 days

For Cutting : 4 days For Sewing : 22 days

For Washing and Ironing: 12 days

For Final inspection and Packing: 7 days

Illustrate a suitable production planning through Gantt chart for the above mentioned order.

- 4. Prepare a suitable check list for cutting operation to avoid errors.
- 5. The sewing machine operators in an apparel factory are expected to work for 400 minutes in a shift of 8 hours. The remaining time is meant for rest and personal needs etc.
 - a) Determine the Standard time for attaching a single piece of pocket, whose normal time (basic time) is 3 minutes.
 - b) Calculate number of pockets to be attached per shift.
 - c) If the operator engaged on the above job completed pocket attaching for 80 pcs of Style no. ZEN/10/011, where ZEN/10/011 is described as "2 pocket P/C blended men's formal shirt on plain", calculate the productive efficiency of that operator. 2 + 1 + 2

- 6. Details of orders in hand as on 22nd November, 2011 in M/s Karley Export are given.
 - a) Order No.1537: Style No. 3200:

Colour Pink/002 : Size $\,M-100\,$ pcs, Size $\,L-120\,$ pcs, Size $\,XL-50\,$ pcs

Colour Red/005 : Size M - 80 pcs, Size L - 100 pcs, Size XL - 50 pcs

Style No. 4300:

Colour Green/002 : Size M – 200 pcs, Size L – 150 pcs, Size XL – 80 pcs

b) Order No. 1231 : Style No. 4100 :

Colour Pink/002 : Size $\,M-100\,$ pcs, Size $\,L-120\,$ pcs, Size $\,XL-50\,$ pcs

Style No. 3200: Colour Black/012:

Size M – 100 pcs, Size L – 120 pcs, Size XL – 50 pcs

Colour Pink/002 : Size M - 120 pcs, Size L - 130 pcs, Size XL - 70 pcs

c) Order No. 1432 : Style No. 5222 :

Colour Green/002 : Size M – 300 pcs, Size L – 250 pcs, Size XL – 180 pcs

Style No. 3200:

Colour Red/005 : Size M - 200 pcs, Size L - 150 pcs, Size XL - 80 pcs

Colour Pink/002 : Size M – 200 pcs, Size L – 150 pcs, Size XL – 80 pcs

Prepare an order concentration chart for Style No. 3200.

Assume that 2000 men's kurtas must be made in one 40 hour week. Given information are as under:

Standard work content per garment = 10 minutes

Predicted attendance = 95%

Predicted utilization = 90%

Predicted performance rating = 90 % against BSI

Calculate estimated number of operators required for the order mentioned above.

b) What do you mean by 'Throughput time'? Explain with a suitable example. 3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Describe a suitable set of sequential steps involved in improving the productivity in Apparel Industry.
 - b) The activities undertaken by an operator of a high speed computerized 20 head embroidery machine are as observed under for a particular day:

Threading: 15 minutes

Framing: 8 minutes

Loading of Design to the CPU: 4 minutes

Automatic Embroidery (1 full repeat): 35 minutes

M/c stoppage due to thread breakage and knotting: 8 minutes

M/c stoppage due to power failure: 5 minutes

Taking off the embroidered fabric: 4 minutes.

Prepare a multiple activity chart and calculate capacity utilization % of man and machine in the given work cycle.

7 + 8

9. a) An assembly operation in Sewing Department consists of five elements with following observed times and the performance rating.

Element	Observed Time in	Performance Rating %
	Seconds	
Lifting feed dog and	12	
feeding fabric		
Adjusting fabric	10	
position against	•	
notch mark	4	
Sewing	10	80
Lifting feed dog and	5	
taking off the piece		
Dropping the piece	3	
inside the bin	`	

Taking standard process + machine delay allowance as 5% of basic time and assuming rest + personal allowance as 40 minutes and contingency allowance as 10 minutes per shift of 8 hours, calculate standard allowed time per piece.

- b) The following represents the procedure of Garment washing as observed on 20th March, 2011 in M/s Gokul Fashions:
 - i) Bunch of garments (40pcs) are taken from the intermediate storage rack and carried up to the washing machine (5 m away from the rack): Time taken 2 minutes
 - ii) Filling of water to the washing machine: 2 minutes
 - iii) Adding Detergents: 0.5 minute + Delay of1.5 minutes for unavailability of the required detergent in proper place.
 - iv) Mixing detergents: 1 minute
 - v) Checking & loading of garments to the washing machine: 5 minutes
 - vi) Tumble Washing Cycle: 30 minutes
 - vii) Unloading of garments: 4 minutes + delay of 1.5 minutes due to unavailability of trolley in proper place.
 - viii) Carrying the garments up to the Hydro extractor (2.5 m away from the washing machine) : 0.2 minutes.

Draw a Flow Process Chart for the above mentioned activities.

6+9

- 10. a) Explain the factors to be considered in making a plan for Apparel Product Development.
 - b) Mention in brief the basic characteristics, advantages and disadvantages of different manufacturing processes generally adopted in Apparel Industry. Illustrate with suitable flow chart.

 5 + 10
- 11. a) In a knitted T-Shirt Manufacturing Factory M/s A.P. Garments, the data on the output and various inputs are as mentioned below:

Total number of machines per shift: 80

Total number of operators allotted per shift: 82

Total number of helpers per shift: 08

Total number of checkers per shift: 10

Total number of supervisors per shift: 2

Product Sewn : Men's Half Sleeve Casual T-Shirt

SAM of the Shirt (Sewing): 17 minutes

Average output per shift of 8 hours: 1500 shirts

Calculate the following:

- i) Operator Productivity (Sewing)
- ii) Machine Productivity (Sewing)
- iii) Average Productive Efficiency per Machine (sewing)
- iv) Total Labour Productivity (Sewing)

b) In M/s Zenith Apparels, the following information are collected:

Total available working time per shift = 450 minutes, Average absenteeism 2%, Average factory performance = 90%, Rework = 10%, Rejection = 3%, Machine delay = 1%, Process delay = 5%, Misc. Delay (power failure, machine break down, maintenance etc.) = 2%.

- Draw a curve to illustrate detailed break-up of the causes of loss in productivity
- ii) Determine the productivity percentage. 8 + 7

12 a)

Activity	Must	Optimistic	Pessimistic	Most Likely
	Precede	Time (days)	Time (days)	Time (days)
Α	none	2	4	3
В	A	1	3	2
С	В	6	8	7
D	С	5	7	6
E	С	4	6	5
F	D	3	5	4
G	E	1	3	2
Н	G	3	5	4
I	F+H	1	3	2

Calculate the following:

- i) Expected duration of completion for each activity
- ii) Earliest and latest finish of each activity
- iii) Earliest finish of the entire project
- iv) Slack time for each activity
- b) Define 'DELAY', 'STORAGE' and 'INSPECTION'. 12 + 3

- 13. a) What do you mean by 'Line Balancing'? Briefly explain the steps involved in line balancing with a suitable example.
 - b) Production order details as on 25th November, 2011 in M/s Amrutha Apparels are as follows:

Production Order No. 1135

Style No.: 6132

Colour Red : X Size - 140 pcs, L Size - 280 pcs, XXL Size - 70 pcs

Colour Purple : X Size - 200 pcs, L Size - 400 pcs, XXL Size - 100 pcs

Make a suitable cut order plan assuming maximum no. of ply per spread = 40. 9 + 6