MODEL QUESTION

I/II Semester B.E. Degree Examination

Engineering Physics

(Course Title)

Max Marks: 100

Note: Answer any FIVE full Questions choosing TWO Questions from PART-A, TWO Questions from PART-B and ONE Question from PART-C.

Physical constants: Electron mass, $m = 9.11 \times 10^{-31} \text{Kg}$, Electron charge, $e = 1.602 \times 10^{-19} \text{C}$, Velocity of light, $c = 3 \times 10^8 \text{ ms}^{-1}$, Planck's constant, $h = 6.625 \times 10^{-34} \text{Js}$, Boltzmann constant, K = $1.38 \times 10^{-23} \text{JK}^{-1}$, Avagardo number, $N = 6.025 \times 10^{26} \text{/K}$ mole, Permitivity of vacuum, $\epsilon_0 = 8.85 \times 10^{-12} \text{Fm}^{-1}$

Note: Answer any FIVE full questions by choosing at least TWO questions from each part

PART-A

1	a) What is black body? Discuss in briefly Wein's and Rayleigh-Jean's law to	8
	explain blackbody radiation.b) Explain Planck's quantum hypothesis. Derive Planck's law of radiation.c) State and explain Stefan-Boltzmann law.	8 4
2	a) Discuss the effect of temperature and impurity on electrical resistivity of metals	5
	b) Define density of states. Derive an expression for the density of states for conduction electrons per unit volume of metal.	10
	c) Show that the occupation probability at $E = E_F + \Delta E$ is equal to the non- occupation probability at $E = E_F - \Delta E$	5
3	a) Explain i) Bravais lattice ii) Lattice parameters. Distinguish between unit cell and primitive cell	6
	b) Explain the origin of continuous X-ray spectrum.	5
	c) Derive Bragg's law of X-ray diffraction. First order Bragg's reflection occurs when a monochromatic beam of X-ray of wavelength 0.675Å is incident on a crystal at a glancing angle of 4.85°. What is the glancing angle for third order Bragg's reflection to occur?	9
4	a) What are matter waves? Describe the Davison and Germer experiment to determine the wave nature of electrons.	10
	b) Write a note on eigen values and eigen functions.	6
	c) Calculate the deBroglie wavelength associated with an electron with a kinetic energy of 2000eV.	4
	PART-B	
5	a) What are the postulates of special theory of relativistic? Derive an expression for relativity variation of mass with velocity.	7

b) Derive the Einstein's energy mass relation and obtain the expression for senergy and momentum of the particle.

the total energy of a particle is exactly thrice its rest energy, what is the velocity of article? 5

Time: 3 Hrs.

6	a) b)	Describe the different types of dielectric polarization. What are dielectrics? Derive an expression for internal field in the case of dielectric solids.	6 9
	c)	The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given for sulphur density = 2.07×10^3 Kg/m ³ and atomic weight = 32.07.	5
7	a)	Explain the phenomenon of superconductivity and Meissner effect.	6
	b)	Describe Type-I and Type-II superconductors.	7
	c)	Write a note on i)High temperature superconductors and ii) Maglev vehicle.	7
8	a)	Write a note on carbon nanotubes.	5
	b)	Describe the principle and method used in the 'Non-Destructive Testing of materials' for defects using ultrasonics.	7
	c)	The velocity of longitudinal and transverse ultrasonic waves in a metal of density 2.71gm/cc is 6.42km/s and 3.04km/s respectively. Calculate the Poison's ratio, Young's modulus and rigidity modulus of the metal.	6

@@@@@@