CODE:112

QUANTUM POTENTIAL TEST - 2023

[Quality Nurturer \& Mind Utilizer Test for Potential Enhancement]

(IPEC Scholarship-Cum-Admission Test)
 For
 CLASS - XI
 (For XI to XII Moving Students) PAPER - II

Maximum Marks : 255

Time: 3 Hrs.
Please read the instructions carefully. You are allotted 5 minutes specifically fo

INSTRUCTIONS

1. The booklet is your Question Paper. Do not break the seal of this joo et before being instructed to do so by the invigilator.
2. Blank spaces and blank pages are provided in the questic rur ir your rough work. No additional sheets will be provided for rough work.
3. Blank papers, clipboards, log tables, slide rules, calculatc ce ıeras, cellular phones, pagers and electronic gadgets are NOT allowed inside the examination hall.
4. The answer sheet, a machine-readable Optical Re^ponse Sheet (ORS), is provided separately.
5. On breaking the seal of the booklet check that or ains $\mathbf{1 5}$ pages and all the $\mathbf{7 5}$ questions.
6. A candidate has to write his / her answers in the ORS _ . eet by darkening the appropriate bubble with the help of Black/Blue ball point pen as the c ect an wer of the question attempted.
7. Question Paper Format :

This question paper consists of Thre- $\mathbf{D a}_{\mathbf{1}}$.
Part - I: Physics

- 25 re_.ions

Part - III: Chemistry

- Lu - 'restions

Part - III: Mathematics
15 Questions
8. Marking Scheme :

Please see the marking scheme as mentioned in all sections.

[SECTION - I]
[SINGLE CORRECT TYPE]
This section contains 15 Multiple Choice Questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
[Marking Scheme : +3 marks for correct answer and -1 for wrong answer]

1. The mean time period of second's pendulum is 2.00 s and mean absolute error in the time period is 0.05 s . To express maximum estimate of error, the time period should be written as
(A) $(2.00 \pm 0.01) s$
(B) $(2.00 \pm 0.025) \mathrm{s}$
(C) $(2.00 \pm 0.05) \mathrm{s}$
(D) $(2.00 \pm 0.10) \mathrm{s}$
2. The resultant of two equal forces is double of either of the forces. The angle between them is
(A) 120°
(B) 90°
(C) 60°
(D) 0°
3. In a clockwise system
(A) $\hat{j} \times \hat{k}=\hat{i}$
(B) $\hat{i} \cdot \hat{i}=0$
(C) $\hat{j} \times \hat{j}=1$
(D) $\hat{k} \cdot \hat{j}=1$
4. KE of a body of mass m and momentum p, is given by
(A) mp
(B) $\left(p^{2} / 2 m\right)$
(C) $p^{2} m$
(D) $\left(m^{2} / 2 p\right)$
5. The period of oscillation of a simple pendulum in the experiment is recorded as $2.63 \mathrm{~s}, 2.56 \mathrm{~s}$, $2.42 \mathrm{~s}, 2.71 \mathrm{~s}$ and 2.80 s respectively. The average absolute error is
(A) 0.1 s
(B) 0.11 s
(C) 0.01 s
(D) 1.0 s
6. An aeroplane files 400 m north and 300 m south and then files 1200 m upwards then net displacement is
(A) 1200 m
(B) 1300 m
(C) 1400 m
(D) 1500 m
7. A particle moves along a straight line $O X$. At a time t (in seconds) the distance x (in metres) of the particle from O is given by $x=40+12 t-t^{3}$
How long would the particle travel before coming to rest
(A) 24 m
(B) 40 m
(C) 56 m
(D) 16 m
8. Particle A moves along X-axis with a uniform velocity of magnitude $10 \mathrm{~m} / \mathrm{s}$. Particle B moves with uniform velocity $20 \mathrm{~m} / \mathrm{s}$ along a direction making an angle of 60° with the positive direction of X-axis as shown in figure. The relative velocity of B with respect to that of A is

(A) $10 \mathrm{~m} / \mathrm{s}$ along X -axis
(B) $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$ along Y-axis (perpendicular to X -axis)
(C) $10 \sqrt{5}$ along the bisection of the velocity of A and B
(D) $30 \mathrm{~m} / \mathrm{s}$ along negative X -axis
9. A boat is moving with a velocity $3 i+4 j$ with respect to ground. The water in the river is moving with a velocity $-3 i-4 j$ with respect to ground. The relative velocity of the boat with respect to water is
(A) $8 j$
(B) $-6 i-8 j$
(C) $6 i+8 j$
(D) $5 \sqrt{2}$
10. A frictionless wire $A B$ is fixed on a sphere of radius R. A very small spherical ball slips on this wire. The time taken by this ball to slip from A to B is
(A) $\frac{2 \sqrt{g R}}{g \cos \theta}$
(B) $2 \sqrt{g R} \cdot \frac{\cos \theta}{g}$
(C) $2 \sqrt{\frac{R}{g}}$
(D) $\frac{g R}{\sqrt{g \cos \theta}}$

11. A particle starts from rest. Its acceleration (a) versus time (t) is as shown in the figure. The maximum speed of the particle will be
(A) $110 \mathrm{~m} / \mathrm{s}$
(B) $55 \mathrm{~m} / \mathrm{s}$
(C) $550 \mathrm{~m} / \mathrm{s}$
(D) $660 \mathrm{~m} / \mathrm{s}$

12. When a body is thrown with a velocity u making an angle θ with the horizontal plane, the maximum distance covered by it in horizontal direction is
(A) $\frac{u^{2} \sin \theta}{g}$
(B) $\frac{u^{2} 2 \sin \theta}{2 g}$
(C) $\frac{u^{2} \sin 2 \theta}{g}$
(D) $\frac{u^{2} \cos 2 \theta}{g}$
(Space for rough work)
13. A rigid ball of mass m strikes a rigid wall at 60° and gets reflected without loss of speed as shown in the figure below. The value of impulse imparted by the wall to the ball will be
(A) $\frac{m V}{3}$
(B) $m V$
(C) 2 mV
(D) $\frac{m V}{2}$

14. A block of mass 15 kg is held by a string on a inclined plane (angle 30°). The tension T in the string is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(A) 55 N
(B) 60 N
(C) 75 N
(D) 90 N

15. A block of mass 2 kg is kept on the floor. the coefficient of static friction is 0.4 . If a force F of 2.5 Newtons is applied on the block as shown in the figure, the frictional force between the block and
 the floor will be
(A) 2.5 N
(B) 5 N
(C) 7.84 N
(D) 10 N

[SECTION - II]

[COMPREHENSION TYPE]
This section contains 2 Comprehension (5 Multiple Choice Questions).
Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
[Marking Scheme : +4 marks for correct answer and -1 for wrong answer]

Passage \# I

A block of 1 kg is kept on a wedge which is moving with constant acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$ towards left. Given the surface between wedge and floor is smooth and coefficient of friction between block and wedge is $\mu=0.2$. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

16. Find the work done by normal force during an interval of 2 s on the block.
(A) 0
(B) 48 J
(C) 66 J
(D) 8 J
17. Find the work done by frictional force.
(A) -17.6 J
(B) $-16 J$
(C) $-48 J$
(D) 0
18. Find the work done by gravity
(A) 100 J
(B) -40 J
(C) 0
(D) 32 J
(Space for rough work)

Passage \# II

A small particle of mass m attached with a light inextensible thread of length L is moving in a vertical circle of radius L . Minimum velocity required for the particle to go around complete vertical circle at a highest point is $\sqrt{g L}$. In the given case particle is moving in complete vertical circle and ratio of its maximum to minimum velocity is $2: 1$.

19. Minimum velocity of the particle is
(A) $\sqrt{\frac{g L}{3}}$
(B) $2 \sqrt{\frac{g L}{3}}$
(C) $4 \sqrt{\frac{g L}{3}}$
(D) $8 \sqrt{\frac{g L}{3}}$
20. Velocity of the particle when it is moving vertically downward is
(A) $2 \sqrt{\frac{g L}{3}}$
(B) $\sqrt{\frac{8 g L}{3}}$
(C) $\sqrt{\frac{10 g L}{3}}$
(D) $\sqrt{\frac{13 g L}{3}}$

(Space for rough work)

This section contains 5 Subjective Questions. The answer to each of the questions is a single digits integer, ranging from 0 to 9 (both inclusive)
[Marking Scheme: +4 marks for correct answer and $\mathbf{0}$ for wrong answer]
21. A light inextensible string that goes over a smooth fixed pulley as shown in the figure connects two blocks of masses 0.36 kg and 0.72 kg . Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$, find the work done (in joules) by the string on the block of mass 0.36 kg during the first second after the system is released from rest

22. A force $(4 \hat{i}+\hat{j}-2 \hat{k}) N$ acting on a body maintains its velocity at $(2 \hat{i}+2 \hat{j}+3 \hat{k}) \mathrm{ms}^{-1}$. The power exerted is (in Watt)
23. If a body looses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest
24. The height y and the distance x along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) is given by $y=\left(4 t-5 t^{2}\right) m$ and $x=3 t m$, where t is in second. The velocity with which the projectile is projected is (in m / s)
25. Three blocks are connected as shown in the fig. on a horizontal frictionless table if $m_{1}=1 \mathrm{~kg}, m_{2}=8 \mathrm{~kg}, m_{3}=27 \mathrm{~kg}$ and $T_{3}=36 \mathrm{~N}, \mathrm{~T}_{2}$ will be

(Space for rough work)

This section contains 15 Multiple Choice Questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
[Marking Scheme : +3 marks for correct answer and -1 for wrong answer]
26. 10 gm of CaCO_{3} was strongly heated and CO_{2} liberated was absorbed in 1000 mL of 0.5 M NaOH . Assuming 90% purity of CaCO_{3}, how much solution of 0.5 M HCl would be required to react with the solution of the alkali to reach phenolphthalein end point? [Atomic mass $\mathrm{C}=12$, $O=16, \mathrm{Ca}=40$]
(A) 730 mL
(B) 800 mL
(C) 410 mL
(D) 820 mL
27. The $\mathrm{IE}_{1}, \mathrm{IE}_{2}, \mathrm{IE}_{3}, \mathrm{IE}_{4}$ and IE_{5} of an element are 15.1, 24.3, 34.5, 46.8, 162.2 eV respectively. The element is likely to be: (I.E. = lonisation energy)
(A) Na
(B) Si
(C) F
(D) Ca
28. In which of the following $\mathrm{p} \pi-\mathrm{d} \pi$ bonding is observed?
(A) NO_{3}^{-}
(B) SO_{3}^{2-}
(C) BO_{3}^{3-}
(D) CO_{3}^{2-}
29. The correct order of bond angles is:
(A) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{SiH}_{4}$
(B) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
(C) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
(D) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
30. Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$, the one with highest boiling point is:
(A) $\mathrm{H}_{2} \mathrm{Se}$ because of lower molecular weight
(B) H_{2} Te because of higher molecular weight
(C) $\mathrm{H}_{2} \mathrm{~S}$ because of hydrogen bonding
(D) $\mathrm{H}_{2} \mathrm{O}$ because of hydrogen bonding
31. The value of Vander Waal's constant 'a' for gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$ and CH_{4} are 1.360, 1.390, 4.170 and 2.253 litre ${ }^{2}$ atm mol^{-2} respectively. The gas which can most easily be liquefied is:
(A) O_{2}
(B) N_{2}
(C) NH_{3}
(D) CH_{4}
32. The equation for complete combustion of methanol is $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}$ (I$)$. If 64 g of $\mathrm{CH}_{3} \mathrm{OH}$ is combined with 44.8 L of O_{2}, measured at STP, the number of moles of CO_{2} which can be produced is: [Atomic mass $\mathrm{H}=$ 1, $C=12, O=16]$
(A) $2 / 3$
(B) $11 / 3$
(C) $11 / 2$
(D) $4 / 3$
33. From the following reaction sequence,

$$
\begin{aligned}
& \mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaO}+\mathrm{C}_{2} \mathrm{H}_{2} \\
& \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \\
& \mathrm{nC}_{2} \mathrm{H}_{4} \longrightarrow\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{\mathrm{n}}
\end{aligned}
$$

Calculate the mass of polythene which can be produced by 10 kg of CaC_{2}. [Atomic mass $\mathrm{C}=$ $12, \mathrm{Ca}=40$]
(A) 4.375 kg
(B) 2.375 kg
(C) 1.375 kg
(D) 3.375 kg
34. The formal charge on the O -atoms in the ion

(A) -2
(B) -1
(C) 0
(D) +1
35. If a mole were defined to be 3×10^{24} instead of Avogadro's number $\left(N_{A}\right)$, what would be the atomic mass of Argon? Atomic mass of Argon is 40 on conventional scale. $\left(N_{A}=6 \times 10^{23}\right)$
(A) 18
(B) 90
(C) 200
(D) 8
36. An atomic orbital has 2 angular nodes and 1 radial node. The orbital is:
(A) $2 p$
(B) $3 p$
(C) 3d
(D) 4 d
37. What set of quantum numbers is NOT possible?
$\begin{array}{lllll}\text { (A) } & 2 & 1 & 1 & \frac{1}{2}\end{array}$
(B) 21
$\mathrm{m}_{\text {, }} \quad \mathrm{m}_{\mathrm{s}}$
(C) 32
22
$2 \quad \frac{1}{2}$
(D) $\begin{array}{lllll}3 & 3 & -3 & \frac{1}{2}\end{array}$
38. Which electronic transition in He^{+}emits light of wavelength equal to the longest wavelength emitted in the Paschen series of H atom?
(A) $9 \rightarrow 6$
(B) $8 \rightarrow 6$
(C) $8 \rightarrow 5$
(D) $7 \rightarrow 3$
39. Which of the following sets have correctly matched each molecule or ion and its gemetry?

	Tetrahedral	Trigonal pyramidal	T-shaped	Square Planar
(A)	CH_{4}	BCI_{3}	NO_{3}^{-}	SO_{4}^{2-}
(B)	SO_{4}^{2-}	NF_{3}	ICl_{3}	XeF_{4}
(C)	CH_{4}	NO_{3}^{-}	CO_{3}^{2-}	SnCl_{4}
(D)	CCl_{4}	PF_{3}	ICl_{3}	SF_{4}

(Space for rough work)
40. Density of a $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is $1.2 \mathrm{~g} / \mathrm{ml}$ and it is $40 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight. Determine molarity of this solution.
(A) 2.9 M
(B) 3.9 M
(C) 4.9 M
(D) 5.9 M

[SECTION - II]

[COMPREHENSION TYPE]
This section contains 2 Comprehension (5 Multiple Choice Questions).
Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
[Marking Scheme : +4 marks for correct answer and -1 for wrong answer]

Passage \# I

20 ml of the solution containg $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} is titrated with 0.1 M HCl using Phenolphthalein indicator the end point was 10 ml .20 ml of the same solution is titrated with 0.1 M HCl , the end point was 25 ml . with Methylorange indicator from the begining.
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

41. What is molarity of Na 2 CO 3 in solution
(A) 0.05 M
(B) 1.05 g
(C) 5 M
(D) can not be calculated
42. What is amount of NaHCO 3 present in 1 liter of solution
(A) 2.1 g
(B) 1.05 g
(C) 8.1 g
(D) 0.855 g
43. What amount of NaOH is required to convert NaHCO_{3} to $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 1 liter of solution.
(A) $2 g$
(B) 20 g
(C) 1 g
(D) 0.5 g

Passage \# II

The energy required to pull the most loiosely bound electrons from an atom is known as ionization potential. It is expressed in electron volts. The value of ionization potential depends on three fators : (i) the charge on the nucleus (ii) the atomic radius and (iii) the screening effect of inner electron shells.
44. Ionization potential of Na would be numerically the same as
(A) electron affinity of $\mathrm{Na}+$
(B) electronegativity of $\mathrm{Na}+$
(C) electron affinity of Na
(D) ionization potential of Mg
45. Which of the folowing elements has the least ionization potential?
(A) Lithium
(B) Cesium
(C) Mgnesium
(D) Calcium

This section contains 5 Subjective Questions. The answer to each of the questions is a single digits integer, ranging from 0 to 9 (both inclusive)
[Marking Scheme: +4 marks for correct answer and $\mathbf{0}$ for wrong answer]
46. If root mean square speed of CH_{4} (methane) at 48 K is same as the most probable speed of H_{2} at TK, then T is \qquad
47. To prepare 100 gm of 92% by weight solution of NaOH . How many g of $\mathrm{H}_{2} \mathrm{O}$ is needed.
48. Silver (atomic weight $=108 \mathrm{~g} / \mathrm{mol}$) has denisty of $10.5 \mathrm{~g} \mathrm{~cm}^{-3}$. The number of silver atoms on a surface of area $10^{-22} \mathrm{~m}^{2}$ can be expressed in scientific notation $\mathrm{y} \times 10^{x}$. The value of x is
49. The number of spherical node in 4 s orbitals is
50. Maximum number of electrons in an atom that can have the quantum numbers $n=4$, $m_{e}=+1$ is

(Space for rough work)

PART - III [Mathematics]

[SECTION - I]

[SINGLE CORRECT TYPE]
This section contains 15 Multiple Choice Questions. Each question has four choices
(A), (B), (C) and (D) out of which ONLY ONE is correct.
[Marking Scheme : +3 marks for correct answer and -1 for wrong answer]
51. The minimum value of $9 \tan ^{2} \theta+4 \cot ^{2} \theta$ is
(A) 13
(B) 9
(C) 6
(D) 12
52. If $y+\cos \theta=\sin \theta$ has a real solution, then
(A) $-\sqrt{2} \leq y \leq \sqrt{2}$
(B) $y>\sqrt{2}$
(C) $y \leq-\sqrt{2}$
(D) None of these
53. The nth term of the series $1+\frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+$ \qquad is
(A) $\frac{n}{3^{n-1}}$
(B) $\frac{n}{3^{n}-1}$
(C) $\frac{3 n}{n-1}$
(D) $\frac{1}{3^{n}-1}$
54. The equation $a x^{2}+b x+c=0$, where a, b, c are the sides of a $\triangle A B C$, and the equation $x^{2}+\sqrt{2} x+1=0$ have a common root. The measure of $\angle C$ is
(A) 90°
(B) 45°
(C) 60°
(D) None of these
55. The value of $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots . .+n$ terms is
(A) $\frac{n}{2 n+1}$
(B) $\frac{2 n}{2 n+1}$
(C) $\frac{2 n-1}{2 n+1}$
(D) None of these
56. The value of $\lim _{x \rightarrow 0} \frac{\sin x-\tan x}{\tan ^{3} x}$ is
(A) 1
(B) -1
(C) $1 / 2$
(D) $-1 / 2$
57. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \infty}}}$, then the value of $(2 y-1) \frac{d y}{d x}$ is
(A) 0
(B) 1
(C) -1
(D) 2
58. If $\cos (x-y), \cos x$ and $\cos (x+y)$ are in H.P., then $\cos x \sec \frac{y}{2}$ is equal to
(A) $\sqrt{2}$
(B) $-\sqrt{2}$
(C) $\pm \sqrt{2}$
(D) None of these
59. If a, b, c, d, e are in A.P., then $(e-a)$ is equal to
(A) $2(\mathrm{~b}+\mathrm{d})$
(B) $2(\mathrm{~b}-\mathrm{d})$
(C) $2(\mathrm{~d}-\mathrm{b})$
(D) None of these
60. Equation of the bisector of angle B of the triangle $A B C$ is $y=x$. If A is $(2,6)$ and B is $(1,1)$; equation of side $B C$ is
(A) $2 x+y-3=0$
(B) $x-5 y+4=0$
(C) $x-6 y+5=0$
(D) None of these
61. The value of $\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\ldots+\log \cot 89^{\circ}$ is:
(A) 0
(B) 1
(C) $1 / 2$
(D) $3 / 4$
62. The domain of the function $f(x)=\frac{\sqrt{x+2}}{x^{2}-9}$ is:
(A) $(-\infty,-3) \cup[2, \infty)$
(B) $[2,3)$
(C) $[-2,3) \cup(3, \infty)$
(D) $(-\infty,-3) \cup(3, \infty)$
63. If $y=\frac{1}{2 x^{2}+3 x+1}$, then $\frac{d^{2} y}{d x^{2}}$ at $x=-2$ is:
(A) $\frac{38}{27}$
(B) $-\frac{38}{27}$
(C) $\frac{27}{38}$
(D) None of these
64. If $\int \sin ^{3} x \sin 3 x d x=A \sin 2 x+B \sin 4 x+C \sin 6 x+D x+K$, (where K is integration constant), then $(A+B+C+D)$ is equal to:
(A) $\frac{1}{96}$
(B) $-\frac{1}{96}$
(C) $\frac{11}{24}$
(D) $-\frac{11}{24}$
65. If the quadratic equation $a x^{2}+b x+c=0$ has two roots $\alpha \& \beta$, then
(A) $a(x-\alpha)(x-\beta)=0$
(B) $(x+\alpha)(x+\beta)=0$
(C) $b(x-\alpha)(x-\beta)=0$
(D) None of these
(Space for rough work)

This section contains 2 Comprehension (5 Multiple Choice Questions).
Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
[Marking Scheme : +4 marks for correct answer and -1 for wrong answer]

Consider the quadratic polynomial $f(x)=x^{2}-4 a x+5 a^{2}-6 a$.
66. The value of a for which roots of $f(x)=0$ are equal in magnitude and opposite in sign, is:
(A) 0
(B) 1
(C) 2
(D) None of these
67. Number of values of a for which the equation $f(x)=0$ has exactly one root equals to zero, is:
(A) 0
(B) 1
(C) 2
(D) 3
68. The largest integral value of ' a ' for which range of $f(x)$ is $[-5, \infty)$ for every real x, is
(A) 1
(B) 5
(C) 7
(D) 10

Passage \# 2

Let $A B C D$ is a square with sides of units length. Points E and F are taken on sides $A B$ and $A D$ respectively so that $A E=A F$. Let P any point inside the square $A B C D$.
69. The maximum possible area of quadrilateral CDFE is:
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{3}{8}$
(D) $\frac{5}{8}$
70. The value of $(P A)^{2}-(P B)^{2}+(P C)^{2}-(P D)^{2}$ is equal to:
(A) 3
(B) 2
(C) 1
(D) 0

This section contains 5 Subjective Questions. The answer to each of the questions is a single digits integer, ranging from 0 to 9 (both inclusive)
[Marking Scheme: +4 marks for correct answer and $\mathbf{0}$ for wrong answer]
71. Number of solution of the equation $e^{x}\left(e^{x}-2\right)=5\left|e^{x}-1\right|-7$ is
72. The value of $\cos 5^{\circ}+\cos 77^{\circ}+\cos 149^{\circ}+\cos 221^{\circ}+\cos 293^{\circ}$ is equal to
73. If the straight lines $a x+b y+p=0$ and $x \cos \alpha+y \sin \alpha=p$ are inclined at an angle $\frac{\pi}{4}$ and concurrent with the straight line $x \sin \alpha-y \cos \alpha=0$, then $a^{2}+b^{2}$ is
74. Let S_{1}, S_{2}, \ldots be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of the diagonal of S_{n+1}. If the length of a side of S_{1} is 10 cm and the area of S_{n} less than 1 sqcm , then the least value of n is
75. The number of real soltuions of the equation $27^{1 / x}+12^{1 / x}=2 \cdot 8^{1 / x}$ is

(Space for rough work)

