CAREER POINT

 Scholastic Test for Analysis and Reward

CLASS - 11"(PGB)

(Class 11 ${ }^{\text {th }}$ Studying Students)

Instructions to Candidates

1. CP Star Test paper consists of total 90 questions and has been divided in three sections as follows:

a.	Physics	25 Questions
b	Chemistry	25 Questions
c.	Biology	Que. 01 to 25
	40 Questions 26 to 50	
	Que. No. 51 to 90	

2. All questions are compulsory.
3. All the answers will be encircled in OMR sheet which is being provided along with this paper.
4. For every correct answer marked by you, $\mathbf{4}$ marks will be allotted.
5. For every incorrect answer marked by you, $\mathbf{1}$ marks will be deducted.
6. Use of calculator is not permitted in any case.
7. Any kind of malpractice will expel you from exam immediately.
8. For any confusion please talk to the invigilator in the examination hall.
9. For any kind of suggestions or complaints send Email at info@cpil.in

CP Tower, Road No.1, IPIA, Kota (Raj)-5 | Tel: 0744-6630500, 3040000

SECTION-a [PHYSICS]

Q. 1 Three rods of equal length are joined to form an equilateral triangle ABC . D is the midpoint of AB . The coefficient of linear expansion is α_{1} for AB , and α_{2} for AC and BC. If the distance DC remains constant for small changes in temperature -

(1) $\alpha_{1}=\alpha_{2}$
(2) $\alpha_{1}=2 \alpha_{2}$
(3) $\alpha_{1}=4 \alpha_{2}$
(4) $\alpha_{1}=\frac{1}{2} \alpha_{2}$
Q. 2 The friction coefficient between board and the floor in the figure is μ. The maximum force that the man can exert on the rope so that the board does not slip on the floor is

(1) $\mu(M+m) g$
(2) $\frac{\mu(M+m) g}{1-\mu}$
(3) $\mu(M-m) g$
(4) $\frac{\mu(M+m) g}{1+\mu}$
Q. 3 For given system, the acceleration of B is given by-

(1) $6 \mathrm{~m} / \mathrm{s}^{2}$
(2) $2 \mathrm{~m} / \mathrm{s}^{2}$
(3) $4 \mathrm{~m} / \mathrm{s}^{2}$
(4) none of these
Q. 4 The graph shows the variation of temperature (T) of one kilogram of a material with the heat (H) supplied to it. At O, the substance is in the solid state. From the graph, we can conclude that

(1) T_{2} is the melting point of the solid
(2) BC represents the change of state from solid to liquid
(3) $\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)$ represents the latent of fusion of the substance
(4) $\left(\mathrm{H}_{3}-\mathrm{H}_{1}\right)$ represents the latent heat of vaporization of the liquid
Q. 5 Consider a bicycle wheel rolling without slipping on a rough level road at a linear speed as shown in figure. Then -

(a) the speed of the particle A is zero
(b) the speed of B, C and D are all equal to v_{0}
(c) the speed of C is $2 v_{0}$
(d) the speed of B is greater than the speed of O
(1) a, b
(2) b, c
(3) c, d
(4) a, c
Q. 6 A spherical hollow is made in a lead sphere of radius R, such that its surface touches the outside surface of lead sphere and passes through the centre. What is the shift in the centre of mass of lead sphere due to the hollowing -

(1) $\frac{R}{7}$
(2) $\frac{R}{14}$
(3) $\frac{R}{2}$
(4) R
Q. 7 A thin wire of length ℓ and uniform linear mass density ρ is bent into a circular loop with centre O and radius r as shown in figure. The moment of inertia of the loop about the axis XX ' is-

(1) $\frac{3 \rho \ell^{3}}{8 \pi^{2}}$
(2) $\frac{\rho \ell^{3}}{16 \pi^{2}}$
(3) $\frac{3 \rho \ell^{3}}{8 \pi^{2} r}$
(4) $\frac{\rho \ell^{3}}{8 \pi^{2} r}$
Q. 8 The velocity of a car is given by

$$
v=\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) t-\left(5 \mathrm{~m} / \mathrm{s}^{3}\right) \mathrm{t}^{2}
$$

Initially car at $\mathrm{x}=0$ at $\mathrm{t}=0$. Time taken by the car to reach its maximum positive x coordinates is -
(1) 0 s
(2) 1 s
(3) 2 s
(4) 1.5 s
Q. 9 The pitch of a screw gauge is 1 mm and there are 100 division on its circular scale. When nothing is put between its jaw, the zero of the circular scale lies 4 division below the reference line. When a steel wire is placed between the jaws, two main scale divisions are clearly visible and 67 divisions on the circular scale are observed. The diameter of the wire is-
(1) 2.71 mm
(2) 2.67 mm
(3) 2.63 mm
(4) 2.65 mm
Q. 10 If the volume of a gas is doubled at constant pressure, the average translational kinetic energy of its molecules will-
(1) be doubled
(2) remain the same
(3) increase by a factor $\sqrt{2}$
(4) become four times
Q. 11 In a simple pendulum, the breaking strength of the string is double the weight of the bob. The bob is released from rest when the string is horizontal. The string breaks when it makes an angle θ with the vertical-
(1) $\theta=\cos ^{-1}(1 / 3)$
(2) $\theta=60^{\circ}$
(3) $\theta=\cos ^{-1}(2 / 3)$
(4) $\theta=0^{\circ}$
Q. 12 A baseball is projected with a velocity v making an angle θ with the incline of inclination angle α as shown in figure. Find the condition that the ball hits the incline at right angle.

(1) $\cot \theta=2 \tan \alpha$
(2) $\sin \theta=\cos \alpha$
(3) $\tan \theta=\sin \alpha$
(4) $\cot \theta=\tan \alpha$
Q. 13 A ball of mass m is fired vertically upwards from the surface of the earth with velocity nv_{e}, where v_{e} is the escape velocity and $\mathrm{n}<1$. Neglecting air resistance, to what height will the ball rise ? Take radius of the earth as R :
(1) R / n^{2}
(2) $R /\left(1-n^{2}\right)$
(3) $R n^{2} /\left(1-n^{2}\right)$
(4) Rn^{2}
Q. 14 A cubical vessel open from top of side L is filled with a liquid of density ρ then the torque of hydrostatic force on a side wall about an axis passing through one of bottom edges is -
(1) $\frac{\rho \mathrm{gL}^{4}}{4}$
(2) $\frac{\rho L^{4}}{6}$
(3) $\frac{2 \rho g L^{4}}{3}$
(4) $\frac{\mathrm{ggL}^{4}}{3}$
Q. 15 On a smooth inclined plane, a body of mass m is attached between two massless springs. The other ends of the springs are fixed to firm supports. If each spring has force constant k, the period of oscillation of the body is :
(1) $2 \pi \sqrt{\frac{m}{2 k}}$
(2) $2 \pi \sqrt{\frac{2 m}{k}}$
(3) $2 \pi \sqrt{\frac{m g \sin \theta}{2 k}}$
(4) $2 \pi \sqrt{\frac{2 m g \sin \theta}{k}}$
Q. 16 The temperature of a hypothetical gas increases to $\sqrt{2}$ times when compressed adiabatically to half the volume. Its equation can be written as -
(1) $\mathrm{PV}^{3 / 2}=$ constant
(2) $P V^{5 / 2}=$ constant
(3) $\mathrm{PV}^{7 / 3}=$ constant
(4) $P V^{4 / 3}=$ constant
Q. 17 The highest temperature of the gas, attained if the pressure of an ideal gas varies according to the law $\mathrm{P}=\mathrm{P}_{0}-\mathrm{aV}^{2}$, where P_{0} and a are constants, is -
(1) $T_{\max }=\frac{2 P_{0}}{2 n R}\left(\frac{P_{0}}{3 a}\right)^{1 / 2}$
(2) $\mathrm{T}_{\text {max }}=\frac{2}{3} \frac{\mathrm{P}_{0}}{\mathrm{nR}}\left(\frac{\mathrm{P}_{0}}{3 \mathrm{a}}\right)^{1 / 2}$
(3) $\mathrm{T}_{\text {max }}=\frac{\mathrm{P}_{0}}{3 n \mathrm{R}}\left(\frac{\mathrm{P}_{0}}{3 \mathrm{a}}\right)^{1 / 2}$
(4) none of these
Q. 18 Two plates whose masses are m_{1} and m_{2} respectively are connected by a massless spring as shown. The force to be applied on the upper plate for it to raise the lower one when this force is removed is-

(1) $F=m_{1} g$.
(2) $F=m_{2} g$.
(3) $\mathrm{F}<\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{g}$.
(4) $\mathrm{F}>\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}$
Q. 19 Which of the curves in figure represents the relation between Celsius and Fahrenheit temperature -

(1) 1
(2) 2
(3) 3
(4) 4
Q. 20 The position vector of a particle is
$\vec{r}=a[\cos \omega t \hat{i}+\sin \omega t \hat{j}]$. The velocity of the particle is
(1) parallel to position vector
(2) directed towards origin
(3) directed away from origin
(4) perpendicular to position vector
(1) Torque τ caused by \mathbf{F} about z-axis is along $-\hat{k}$
(2) Torque τ^{\prime} caused by \mathbf{F} about z^{\prime} axis is along $-\hat{k}$
Q. 21 A radioactive nucleus initially at rest it decays by emitting an electron and neutron at right angles to one another. The momentum of the electron is $3.2 \times 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and the momentum of the neutron is $6.4 \times 10^{-23} \mathrm{~kg}$ m / s. The angle of the recoiling neutron nucleus with the direction of the electron motion is -
(1) $\pi-\tan ^{-1}(2)$
(2) $\tan ^{-1}(2)$
(3) $\tan ^{-1}(0.5)$
(4) $\frac{\pi}{2}+\tan ^{-1}(2)$
Q. 22 Figure shows a lamina in $x-y$ plane. Two axes z and z^{\prime} pass perpendicular to its plane. A force \mathbf{F} acts in the plane of lamina at point P as shown. Which of the following are true ? (The point P is closer to z^{\prime}-axis than the z axis.)

(3) Total torque is given by $\tau=\tau+\tau^{\prime}$.
(4) Total torque is given by $\tau=\tau-\tau^{\prime}$.
Q. 23 A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_{c} is varying with time as $\mathrm{a}_{\mathrm{c}}=\mathrm{k}^{2} \mathrm{rt}^{4}$, where k is a constant. The power delivered to the particle by the forces acting on it is -
(1) 0
(2) $m k^{2} r^{2} t^{2}$
(3) $\frac{1}{3} \mathrm{mk}^{2} \mathrm{r}^{2} \mathrm{t}^{2}$
(4) $2 \mathrm{mk}^{2} r^{2} t^{3}$
Q. 24 A body of density d and volume V floats with volume V_{1} of its total volume V immersed in a liquid of density d_{1} and the rest of the volume V_{2} immersed in another liquid of density $d_{2}(<$ d_{1}). The volume V_{1} immersed in liquid of density d_{1} is -
(1) $\left(\frac{d-d_{2}}{d_{1}-d_{2}}\right) V$
(2) $\left(\frac{d+d_{2}}{d_{1}+d_{2}}\right) V$
(3) $\left(\frac{d_{1}-d_{2}}{d_{1}}\right) V$
(4) $\frac{d_{1}}{d_{2}} V$
Q. 25 A uniform rod of length l and mass m is fixed at the centre. A spring of spring constant k is connected to rod and wall as shown in figure. The rod is displaced by small angle θ and released. Find time period of oscillation.

Q. 26 The ratio of pH of 0.05 M and 0.005 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions will be -
(1) $2: 1$
(2) $1: 2$
(3) $1: 1.5$
(4) $1.5: 1$
Q. 27 A buffer that is a mixture of acetic acid $\left(K_{a}=2 \times 10^{-5}\right)$ and potassium acetate has $\mathrm{pH}=$ 5.18. The $\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ ratio in this buffer is approx -
(1) $1: 1$
(2) $3: 1$
(3) $5: 1$
(4) $1: 3$
Q. $28 \quad \mathrm{M}(\mathrm{OH})_{\mathrm{x}}$ has a $\mathrm{K}_{\text {sp }}$ of 4×10^{-9} and its solubility is $10^{-3} \mathrm{M}$. The value of x is :
(1) 4
(2) 1
(3) 3
(4) 2
Q. 29 What is the conjugate acid of HPO_{4}^{2-} ?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(3) $\mathrm{H}_{3} \mathrm{O}^{+}$
(4) PO_{4}^{3-}
Q. 30 At temperature, T, a compound $\mathrm{AB}_{2(\mathrm{~g})}$ dissociates according to the reaction
$2 \mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{AB}_{(\mathrm{g})}+\mathrm{B}_{2(\mathrm{~g})}$ with a degree of dissociation x, which is small compared with unity. The expression for K_{p}, in terms of x and the total pressure, P is :
(1) $\frac{\mathrm{Px}^{3}}{2}$
(2) $\frac{P x^{2}}{3}$
(3) $\frac{P x^{3}}{3}$
(4) $\frac{\mathrm{Px}^{2}}{2}$
Q. 31 The value of K_{c} at 721 K temperature for following reaction is 50 .
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ if equilibrium concentration of N_{2} and O_{2} is 0.5 M then value of K_{p} is -
(1) 0.02
(2) 0.2
(3) 50.0
(4) $\frac{50}{\mathrm{RT}}$
Q. 32 The equilibrium constant for equilibria,
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$ and
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ are K_{1} and K_{2} respectively. Then -
(1) $\mathrm{K}_{2}=\mathrm{K}_{1}$
(2) $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
(3) $K_{2}=1 / K_{1}$
(4) $K_{2}=1 / K_{1}^{2}$
Q. 33 Which oxide of nitrogen is the most stable :
(1) $2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}$;

$$
\mathrm{K}=6.7 \times 10^{16} \mathrm{~mol}^{\text {litre }}{ }^{-1}
$$

(2) $2 \mathrm{NO}_{(\mathrm{g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$; $\mathrm{K}=2.2 \times 10^{30} \mathrm{~mol}_{\mathrm{litre}}{ }^{-1}$
(3) $2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})}$;

$$
\mathrm{K}=1.2 \times 10^{34} \mathrm{~mol} \mathrm{litre}^{-1}
$$

(4) $2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$;

$$
\mathrm{K}=3.5 \times 10^{33} \mathrm{~mol} \text { litre }^{-1}
$$

Q. 34 The relative rates of effusion of O_{2} to CH_{4} through a container containing O_{2} and CH_{4} in $3: 2$ mass ratio will be -
(1) $\frac{3 \sqrt{2}}{4}$
(2) $\frac{3}{4 \sqrt{2}}$
(3) $\frac{3}{2 \sqrt{2}}$
(4) none of these
Q. 35 Equation for Boyle's law is
(1) $\frac{d^{2} P}{P}=-\frac{d V}{d T}$
(2) $\frac{d^{2} P}{P}=\frac{+d^{2} V}{P}$
(3) $\frac{-d P}{d V}=\frac{K}{V^{2}}$
(4) $\frac{d P}{P}=\frac{+d V}{V}$
Q. 36 What is the total pressure in 10 litre flask at $27^{\circ} \mathrm{C}$ of a sample of gas that contain 6 gram of hydrogen, 15.2 gram of N_{2} and 16.8 gram of helium -
(1) 1.91 atm
(2) 2.46 atm
(3) 5.89 atm
(4) 19.1 atm
Q. 37 The number of spectral lines produced according to Bohr's concept when one electron jumps from $5^{\text {th }}$ to $2^{\text {nd }}$ shell are -
(1) 6
(2) 8
(3) 10
(4) 12
Q. 38 The K.E. of electron in $2^{\text {nd }}$ orbit of Li^{+2} ion -
(1) -30.6 eV
(2) +30.6 eV
(3) +13.6 eV
(4) +27.4 eV
Q. 39 The number of radial nodes of 3 s and 2p-orbitals are respectively :
(1) 2,0
(2) 0,2
(3) 1,2
(4) 2,1
Q. 40 Maximum value ($\mathrm{n}+\ell+\mathrm{m}$) for unpaired electrons in second excited state of chlorine ${ }_{17} \mathrm{Cl}$ is :
(1) 28
(2) 25
(3) 20
(4) 30
Q. 41 The energies E_{1} and E_{2} for two radiations are 2.5 eV and 5.0 eV respectively. The relation between their wavelengths i.e., λ_{1} and λ_{2} will be -
(1) $\lambda_{1}=\frac{1}{2} \lambda_{2}$
(2) $\lambda_{1}=\lambda_{2}$
(3) $\lambda_{1}=2 \lambda_{2}$
(4) $\lambda_{1}=4 \lambda_{2}$
Q. 42 The electronic configuration of few elements are given below. Arrange them in correct order of their electron affinity -
I. $1 s^{2} 2 s^{2} 2 p^{5}$
II. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
III. $1 s^{2} 2 s^{2} 2 p^{4}$
IV. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
(1) I $<$ II $<$ III $<$ IV
(2) I $<$ III $<$ II $<$ IV
(3) II $>$ I $>$ IV $>$ III
(4) II $>$ I $>$ III $>$ IV
Q. 46 Among $\mathrm{LiCl}, \mathrm{BeCl}_{2}, \mathrm{BCl}_{3}$ and CCl_{4}, the covalent bond character follows the order-
(1) $\mathrm{LiCl}<\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
(2) $\mathrm{LiCl}>\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(3) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(4) $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
Q. 47 Which of the following two are isostructural ?
(1) $\mathrm{XeF}_{2}, \mathrm{IF}_{2}^{-}$
(2) $\mathrm{NH}_{3}, \mathrm{BF}_{3}$
(3) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$
(4) $\mathrm{PCl}_{5}, \mathrm{ICl}_{5}$
Q. 48 The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}_{2}$ is -
(1) $\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
Q. 43 The correct order of radii is -
(1) $\mathrm{N}<\mathrm{Be}<\mathrm{B}$
(2) $\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
(2) $\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}$
(3) $\mathrm{CO}<\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}_{2}$
(4) $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}$
(3) $\mathrm{Na}<\mathrm{Li}<\mathrm{K}$
(4) $\mathrm{Fe}^{3+}<\mathrm{Fe}^{2+}<\mathrm{Fe}^{4+}$
Q. 44 Which species has the maximum ionic radius -
(1) Na^{+}
(2) O^{2-}
(3) F^{-}
(4) Mg^{2+}
Q. 45 Select correct statements about $\mathrm{NO}\left[\mathrm{BF}_{4}\right]$
(a) It has 5σ and 2π bonds
(b) Nitrogen-oxygen bond length is higher than nitric oxide (NO)
(c) It has diamagnetic species
(d) $\mathrm{B}-\mathrm{F}$ bond length in this compounds is lower than in BF_{3}
(1) a, c
(2) a, c, d
(3) a, b, c
(4) b, c, d
(1) 12
(2) 24
(3) 48
(4) 6
Q. $50 \quad 1.5 \mathrm{~g}$ of a divalent metal displaced 4 g of copper (at. Wt. = 64) from a solution of copper sulphate. The atomic weight of the metal is -

SECTION-c [BIOLOGY]

Q. 51 Study the following diagram carefully and identify the structure responsible for formation of lenticel

(1) B - cork cambium
(2) A - epidermis
(3) C - cork cambium
(4) C - complementary cell
Q. 52 Age of tree can be calculated by its -
(1) Height
(2) Number of branches
(3) Number of annual ring
(4) Girth
Q. 53 Match column I and Column II and choose the correct set .

	Column-I		Column-II
(A)	Cuticle	(I)	Guard cells
(B)	Bulliform cell	(II)	Single layer
(C)	Stomata	(III)	Waxy layer
(D)	Epidermis	(IV)	empty colourless
cell			

	A	B	C	D
(1)	I	III	IV	I
(2)	II	III	II	IV
(3)	II	III	I	IV
(4)	III	IV	I	II

Q. 54 Which of the following is true regarding the figure given below ?

(1) It belongs to ascomycetes
(2) Asexual spore are conidia
(3) It is Morchella
(4) None of the above
Q. 55 Least common character are observed in members of
(1) Kingdom
(2) Family
(3) Genus
(4) Species
Q. 56 Members of the kingdom protista differ from members of the kingdom monera mainly due to the presence of -
(1) RNA
(2) DNA
(3) Cell wall
(4) Membrane-bound nucleus
Q. 57 Nitrogen fixation in blue green algae occurs in -
(1) Heterocyst
(2) Hormogonia
(3) Gelatinous sheath
(4) All
Q. 58 Methanogens are -
(1) Obligate anaerobes
(2) Found in saline marshes
(3) CO_{2} oxidizing forms
(4) Facultative anaerobes
Q. 59 Woese found that the \qquad kingdoms naturally cluster into \qquad main categories. He called those categories as \qquad
(1) 6, 3 domains
(2) 4, 6, progenote
(3) 5, 4, archea
(4) 6, 4, eukarya
Q. 60 Photosynthetic pigments chlorophyll a and chlorophyll c are common in
(1) Cyanobacteria and purple sulphur bacteria
(2) Diatoms and euglenoids
(3) Dinoflagellates and diatoms
(4) Pyrrophytes and euglenophytes
Q. 61 Two species can be said to be reproductively isolated if they are
(1) Interfertile
(2) Not interfertile
(3) Do not grow together in a common habitat
(4) Growing together in a common habitat
Q. 62 Two kingdom classification was given by -
(1) Heackle
(2) Linnaeus
(3) Copeland
(4) Whittakar
Q. 63 Red tide occurs due to -
(1) Gonyaulex
(2) Trichodesmium
(3) (1) \& (2) both
(4) Red algae
Q. 64 Which of the following is partially or completely heterotrophs ?
(1) Rhizopus
(2) Cuscutta
(3) Venus fly trap
(4) All of the above
Q. 65 Select the incorrect match w.r.t. type of sexual reproduction in fungi -
(1) Gametangial contact - Oomycetes
(2) Gametangial copulation - Zygomycetes
(3) Spermatization - Deuteromycetes
(4) Somatogamy - Basidiomycetes
Q. 66 Choose the correct description of the flower depicted in the floral diagram given below-

(1) United valvate sepal, united valvate petals, free epiphyllous stamen, unilocular ovary with parietal placentation
(2) United valvate sepal, united valvate petals, free epiphyllous stamen, bilocular ovary with parietal placentation
(3) United valvate sepal, united valvate petals, free epipetalous stamen, bilocular ovary with axile placentation
(4) None of the above
Q. 67 Phyllode is commonly observed in -
(1) Australlian acacia
(2) Cactus
(3) Ruscus
(4) (2) \& (3) both
Q. 68 Cyllindrical photosynthetic stem is present in-
(1) Opuntia
(2) Euphorbia
(3) Acacia
(4) Asparagus
Q. 69 Ovule are borne on central axis and true septum is present in -
(1) Axile placentation
(2) Parietal placentation
(3) Free central placentation
(4) Superficial placentation
Q. 70 What type of vegetative propagule is shown in figure given below -

(1) Tuber
(2) Rhizome
(3) Sucker
(4) Stolon
Q. 71 which locomotiom is most primitive and oldest type of locomotiom.
(1) ciliated
(2) flagellated
(3) muscules
(4) amoeboid
Q. 72 Entamoeba histolytica Parasite is
(1) Facultative anaerobes
(2) obligatory anaerobes
(3) Facultative aerobes
(4) obligatory aerobes
Q. 73 First Complete alimentary canal is feature of -
(1) Aschahelminthes
(2) Annelides
(3) Arthropods
(4) ctenophora
Q. 74 Intercalated disc is feature of -
(1) Voluntary muscle
(2) Smooth muscle
(3) cardiac muscle
(4) $2 \& 3$
Q. 75 loose cells aggregates are feature of -
(1) Protozoan
(2) coelenterata
(3) cetnophora
(4) Porifera
Q. 76 Maximum mixing of blood occurs in which creature's heart -
(1) Frog
(2) Crocodile
(3) Cockroach
(4) Scoliodon
Q. 77 The Triploblastic animal are secondary radially Symmetrical -
(1) Molluscans
(2) Echinodermates
(3) Urochordates
(4) Cyclostomates
Q. 78 The caustative agent of peptic ulcers mainly is -
(1) Entamoeba histolytica
(2) E. coli
(3) Helicobacter pylori
(4) Ascaris lumbricoides
Q. 79 The main function of Buccal cavity
(1) Mastication
(2) deglutition
(3) absorbtion
(4) $1 \& 2$

Q80 Counter current mechanism help in -
(1) Formation of concentrated urine by Henle's loop
(2) Oxygenation of blood in gills of fishes
(3) both 1 \& 2
(4) Formation of concentrated urine \& conduction of nerve Impulse
Q. 81 The exchange of gases take place from alvevoli \& there duct, these part are called
(1) conducting part
(2) respiratory part
(3) exchange part
(4) $2 \& 3$
Q. 82 Which disease is odd one
(1) Emphysema
(2) Asthema
(3) Chronic bronchitis
(4) Pneumocomiosis
Q. 83 Warning signal of deprivation of blood supply to heart muscle leads to chest pain
(1) heart attack
(2) heart failure
(3) cardiac arrest
(4) Angina pectoris
Q. 84 How many statements are correct regarding TMAO -
(a) Molluscan \& marine fishes excretory product
(b) Mainly present in cartilagenous fishes
(c) Anti freezing protein help in formation of
(d) Protect from the damaging effect of urea
(1) a, b, c
(2) b, c, d
(3) Only c, d
(4) All a, b, c \& d
Q. 85 It's collection of heart muscle cells specialized for electrical conduction that transmits the electrical impulses from A.V. node to the wall of ventricle
(1) Bundle of His
(2) Purkinje Fiber
(3) Inter nodel Fiber
(4) Chordae Tendinae
Q. 86 In counter current mechanism, counter current multiplier is -------- \& counter current exchanger is -------- respectively
(1) Henle's loop \& vasa recta
(2) vasa recta \& Henle's loop
(3) PCT \& DCT
(4) Henle's loop \& DCT
Q. 87 Which statement is incorrect regardely cockroach
(1) The ring of 6-8 blind tubules called hepatic \& gastric cecae is present at the junction of foregut \& midgut
(2) At the junction of midgut \& hind gut 100150 yellow coloured this filamentous structure called malphighian tubule are present.
(3) The crop is followed by gizzard or proventricular having outer thick longitudinal layers
(4) The haemolymph is composed of colourless plasma \& haemocytes
Q. 88 In cockroach which structure is formed by fusion of six segments \& show great mobility in all direction due to flexible structure
(1) Head
(2) Abdomen
(3) Thorax
(4) Neck
Q. 89 In pheretima the intestine in between 22-26 segments is the presence of internal medial fold of dorsal wall called -
(1) Intestinal cecae
(2) Typhlosole
(3) Pre typhlosole part of intestine
(4) Post typhlosole part of intestine
Q. 90 In frog which respiration always occurs whether the frog passes from hibernation, aestivation, remain on submerged \& terrestrial environment
(1) Buccal pharygeal respiration
(2) Cutaneous respiration
(3) Pulmonary respiration
(4) $1 \& 2$ both

CAREER POINT
 WHERE CARE LEADS TO CAREER
 universe of education ~ Pre-School to Ph.D

Tutorial Services 6th to 12th / 12th pass
e-Learning Solutions 7th to 12th / 12th pass

School Education Pre-School to 12th

Higher Education 10th to Ph.D

CAREER POINT
Pre-Engineering, Pre-Medical q Pre-Foundation

VIDEO LECTURES
(on Pen Drive | SD Card)

CLOBAL KIDS

CAREER POINT
UNIVERSITY
-KOTA| HAMRIRUR -

Distance Learning Programme
eCareerPoint

C.P.I•S•D

Career Point
Institute of Skill Development

Trust of more than $\mathbf{3 . 8 2}$ Lakhs students \& Parents since inception 12,100+ IITians I 1,40,000+ Engineers I 12,500+ Doctors

Alwar	$: 0144-2700785,96729-77516$
Baran	$: 96729-77167$
Bhagalpur	$: 95230-98131,95230-98130$
Bhubaneswar	$: 93374-49749,82601-03344$
Bilaspur	$: 70247-10777,99811-66082$
Bundi	$: 90791-34701,90791-34688$
Delhi	$: 89208-74769,011-40392491$
Guwahati	$: 93654-80875,98640-38227$
Gwalior	$: 74404-40940,74404-40941$
Himatnagar	$: 70690-36130 / 31 / 32 / 33$
Jaipur	$: 0141-2762774,96729-77508$
Jammu	$: 94192-22022$
Jamnagar	$: 0288-2661441,98250-74410$
Jodhpur	$: 0291-2616192,96729-77509$
Kishangarh	$: 96729-70615$
Kolkata	$: 82402-84809,96744-54809$
Kollam	$: 0474-2747642,83300-12601$
Korba	$: 96729-44767$

Lucknow	$: 81770-00200,81770-00300$
Mahendragarh	$: 90791-34735$
Malkapur	$: 96729-77583$
Modasa	$: 70690-36134 / 35 / 37 / 38$
Mysuru	$: 91089-99777,97397-11792$
Narayangaon	$: 90791-34702$
Patiala	$: 91155-05566,91155-05577$
Patna	$: 96729-77237$
Pilani	$: 96729-77414$
Rajahmundry	$: 91772-12299,91775-92299$
Rourkela	$: 0661-2471412,93374-49749$
Shahjahanpur	$: 83180-10464$
Siliguri	$: 96729-70387$
Sriharikota	$: 96729-77030$
Srinagar	$: 0194-2415059,94193-18549$
Trivandrum	$: 83300-12600,94473-24764$
Visakhapatnam	$: 91772-42299,91776-12299$

G CAREER POINT

KOTA (Head Office): Career Point Ltd, CP Tower, Road No.1, IPIA Kota-5 (Raj.) For details SMS: Type CP STAR to 56767 I Call: 0744-6630500, 3040000 I info@cpil.in

