Reg. No. : \qquad
Name : \qquad

M-Tech Degree Examination

First Semester
Model question paper I
Branch: Mechanical Engineering
Specialization: Thermal Power Engineering
MMETP 103 - Advanced Heat and Mass Transfer
Answer All Questions
(Use of heat and mass transfer table is permitted)

Time: 3 hrs
Max. Marks: 100

1. Three sides of a thin rectangular plate are maintained at a constant temperature T_{1}, while the fourth side is maintained at a constant temperature of T_{2} which is different form T_{1}. Derive a general equation for temperature distribution along the plate. 25 Marks

OR

2. An iron plate $(\mathrm{k}=60 \mathrm{~W} / \mathrm{mK}), \mathrm{C}=0.46 \mathrm{~kJ} / \mathrm{kgK}, \rho=7850 \mathrm{~kg} / \mathrm{m}^{3}$ and $\left.\alpha=1.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$ of 50 mm thickness is initially at $225^{\circ} \mathrm{C}$. Suddenly, both surfaces are exposed to an ambient temperature of $25^{0} \mathrm{C}$ with a a heat transfer coefficient of $500 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate a). The centre temperature at 2 min . after start of cooling b). The temperature at a depth of 1 cm from the surface at two minute after the start of cooling and c). The energy removed from the plate per sq.m. during this time.

25 Marks
3. Derive a correlation between Colburn's j-factor and the local friction coefficient for flow over a flat plate for a Prandtl number equal to unity.

25 Marks

OR

4. Air at $20^{\circ} \mathrm{C}$ and a pressure of 1 bar is moving over a flat plate at a velocity of $3 \mathrm{~m} / \mathrm{s}$. If the plate is 280 mm wide and at $56^{\circ} \mathrm{C}$, estimate the following quantities at $\mathrm{x}=280 \mathrm{~mm}$ when the bulk mean temperature of air is $38^{\circ} \mathrm{C}$; a). Boundary layer thickness, b). Local friction coefficient, c). Shear stress due to friction, d). Thickness of thermal boundary layer,
e).Local convective heat transfer coefficient, f). Rate of heart transfer by convection and
g). Total mass flow through the boundary.

25 Marks
5. A diffuse circular disc of diameter D and area A_{j} is kept parallel to a plane diffuse surface of area $A_{i} \ll A_{j}$. Ai is located at a distance of L from the centre of A_{j}. Obtain an expression for the view factor F_{ij}

25 Marks

OR

6. A spherical vessel of diameter 0.4 m encloses a gas mixture at a total pressure of $\mathrm{P}=2$ atm . The gas mixture contains nitrogen at a partial pressure of 1 atm ., water vapor at a partial pressure of 0.4 atm ., and carbon dioxide at a partial pressure of 0.6 atm . The gas is at a temperature of 800 K , while the sphere surface is at 400 K . The sphere is gray with an emissivity of $\varepsilon=0.5$. Determine the radiant heat transfer to the shell. 25 Marks
7. Based on Nusselt's assumptions, derive a correlation for the velocity profile of the condensate across its thickness, for film condensation process of pure vapors on a vertical plate.

25 Marks

OR

8. Helium gas is stored at $20^{\circ} \mathrm{C}$ in a spherical container of fused silica $\left(\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}\right)$ which has a diameter of 0.20 m and a wall thickness of 2 mm . If the container is charged to an initial pressure of 4 bars, what is the rate at which this pressure decreases with time?. Properties of helium fused silica at 293 K are, a). Mass diffusion coefficient $=0.4 \times 10^{-13} \mathrm{~m}^{2} / \mathrm{s}$ and b). Solubility $\mathrm{S}=0.45 \times 10^{-3} \mathrm{kmol} / \mathrm{m}^{3}$ bar.
