Reg. No \qquad
Name \qquad

M.TECH DEGREE EXAMINATION

First Semester

Model Question Paper - I
Branch: Electrical and Electronics Engineering
Specialization: Power Electronics
MEEPE 103 POWER CONVERTERS
(2013 Admission onwards)

Time: Three hours
Maximum: 100 Marks

1. (a) A dc voltage of 100 V is switched on to a 23Ω resistance in series with 2 mF capacitance. Find the magnitude of current and capacitor voltage at $t=0.2$ Seconds. (b) A load comprises of resistance and inductance is fed from voltage source of $\mathrm{v}=\mathrm{Vm} \operatorname{Sin}(\mathrm{wt})$ through a diode. A freewheeling diode is connected across the load. Analyze the circuit assuming the output current is continuous and sketch the output current and output voltage waveforms.
[12 Marks]
(c) An ideal capacitor of value C is connected to $\mathrm{Vm} \operatorname{Sin}(314 \mathrm{t})$ through one SCR. If SCR is fired at firing angle α in the positive half cycle of input supply voltage, Will the SCR conduct in the positive half cycle when fired at the same firing angle? Explain.

OR

2. (a) Explain in detail various thyristor specifications.
(b) Illustrates the limitations on $\mathrm{di} / \mathrm{dt}$ and $\mathrm{dv} / \mathrm{dt}$ of thyristors.
3. (a) A single phase semiconverter is feeding a resistive load. Derive an expression for average load voltage.
(b) A three phase full converter is fires at 75 degrees. Sketch phase voltages, line voltages, scheme of firing pulses and clearly indicate the output voltage.
4. (a) A single phase full converter supplied from VmSin(wt) feeds RL load. A freewheeling diode is connected across the load. Sketch voltage across and current through freewheeling diode.
[7 Marks]
(b) A three phase semi converter is fired at 30 degrees. Sketch firing pulses, line and phase voltages and output voltage.
[18 Marks]
5. With neat circuit diagram explain the operation of a buck boost converter in continuous and discontinuous current modes.

OR

6. (a) Find the duty ratio of a cuk converter operating at 2 kHz to obtain an output voltage 200 V . The input dc voltage consist of two series connected 12 V batteries. Also find the voltage across the switch.
[8 Marks]
(b) In a step up converter, the duty ratio is adjusted to regulate the output voltage Vo at 48 V . The input voltage varies in a wide range from 12 to 36 V . The maximum power output is 120 W . For stability reasons, it is required that the converter operate in a discontinuous -current- conduction mode. The switching frequency is 50 kHz .
[8 Marks]
(c) In a buck-boost converter operating at $20 \mathrm{kHz}, \mathrm{L}=0.05 \mathrm{mH}$. The output capacitor C is sufficiently large and $\mathrm{Vd}=15 \mathrm{~V}$. The input is to be regulated at 10 V and converter is supplying a load of 10 W . Calculate the duty ratio D .
7. (a) With neat circuits and V-I diagrams, classify de chopper circuits.
[10 Marks]
(b) A type-A chopper is feeding a separately excited dc motor drive. If motor current is discontinuous, derive an expression for the time at which motor current falls to zero during OFF- period of chopper.
[15 Marks]

OR

8. (a) Briefly discuss various voltage control schemes in voltage source inverters.
(b) A three phase voltage source inverter is feeing balanced star connected resistive load and operates in 180 degree mode of operation. Sketch firing signals and phase and line voltages. Provide derivations.
