M.A.M. SCHOOL OF ENGINEERING?

DEPARTMENT OFMECHANICAL ENGINEERING

QUESTION BANK

ME1202 - KINEMATICS OF MACHINERY

SEMESTER: III

$\underline{\text { UNIT - I (PART - A) }}$

1. How many inversions are possible from a four-bar kinematic chain? Name them based on their input-output motions.
2. What are the three conditions to obtain a four-bar crank - rocker mechanism?
3. Sketch the Geneva when indexing mechanism and state its applications.
4. State at least one similarity and on e difference between a Helical pair and cylindrical pair.
5. Define transmission angle of a four-bar mechanism. What are the worst talues of transmission angle?
6. Define instantaneous centre of rotation and write the equation to determine the number of instantaneous centre's of a mechanism.
7. Define a kinematic chain and write the relation between the number of pairs and links.
8. Differentiate between closed pair and unclosed pair in kinematiemechanism.
9. Define the term instantaneous centre of rotation an hog to find the number of instantaneous centers in a mechanism.
10. State any four types of kinematic pairs according to the types of relative motion between them.
11. Explain with a neat sketch, the space centrode add body centrode.
12. What is a machine? Give two examples. differentiate between a machine and a structure.
13. Explain Grubler's criterion for deterniming degree of freedom for mechanism.
14. Briefly explain the types of instantaneous centres.
15. Define kinematic pair an iilustrate any two types of constrained pair.
16. Explain Kutzbach criterion tor the movability of a mechanism having plane motion.
17. Illustrate the spacentrede and body centrode.
18. Write expression governing Kutzbach criterion for mobility of a planer mechanism.
19. Name any feulinconmon mechanism with specific application.
20. What is the specialty of a planar of a planar four bar linkage with regard to coupler curve
21. Enturate the difference between a machine and a structure.
22. List out the inversions of a double slider crank chain.
23. State the Kutzbach criterion.
24. What are toggle positions?

25 . What is an inversion?
26. Define Kinematic pair.
27. Define instantaneous centre.
28. What is meant by Transmission angle"?
29. What do you mean by inversion of a mechanism?
30. What is mechanical advantage in a mechanism?
31. Define instantaneous centre.
32. What is Grashoff's law for a four bar linkage?
33. Sketch an offset slider crank mechanism.
34. Explain the Kutzbach criterion for movability of a mechanism having plane motion.
35. Describe the working of Oldham's coupling with a neat sketch.
36. State and prove kennedy's three centre theorem.
37. State at least one similarity and one difference between a helical pair and cylindrical pair.
38. Define kinematics chain.
39. Briefly explain the types of instantaneous centres.
40. Define DOF of a mechanism.
41. State Grubbler's criterion for planar mechanisms
42. Define "Actual Mechanical Advantage".
43. How the direction of coriolis component of acceleration is determined?
44. Illustrate completely constrained motion and incompletely constraineduntion.
45. Distinguish between kinematics pair and kinematics chain.
46. What is kutzbach criterion for planar mechanism?
47. Sketch and exact straight line mechanism, with link proportions.
48. Illustrate the instantaneous centers of a typical four bar mechanism.
49. Define a kinematic pair and illustrate the workingofascrew pair and a turning pair.
50. List the types of kinematic chains, with four lewer pairs of importance.
51. Write the relation between the number or instantaneous centers and the number of links in a mechanism.

UNIT -1 (PART - B)

1. Define transmission angle. Sketch a drag-link mechanism in maximum transmission angle and minimum trânsmistion angle positions.
2. Define kinematic jirersion. Describe in detail with neat sketches an elliptic trammel.
3. Design a four-bar crank rocker quick return mechanism for the following date : Rocker swing angle $=90^{\circ}$, Time ratio $=1.25$ and output link length $=60 \mathrm{~mm}$
4. Derive the equation to determine the degree of freedom of a planar mechanism. Prove that a cam-roller follower mechanism is an exception for the above equation.
5. Explan with neat sketches and their kinematic differences, two different inversions of single slider crank chain that can be used for the same application in machine tools.
6. What do you mean by inversion of a mechanism?
7. Sketch and explain all the inversions of a double-slider crank mechanism.
8. Sketch and describe the working of two different types of quick return mechanisms. Derive an expression for the ratio of time taken in forward and return stroke for one of these mechanism.
9. Sketch and explain the inversion of a 4 bar mechanism, all the four pairs are turning pairs. And also sketch and explain any two types of straight line motion generating mechanism
10. Sketch a slider crank chain and its various inversions stating actual machines which they are used in practice.
11. Draw the sketch of a mechanism in which a point traces an exact straight line. The mechanism must of only revolute pairs prove that the point traces an exact straight line motion.
12. Explain different kinds of kinematic pairs with examples.
13. Sketch and explain any two inversions of single slider crank chain.
14. Explain the following i) Mechanical advantages 2) Grashoff's Law, iii) Mobility of a mechanism
15. Sketch and explain any two inversions of double slider crank chain.
16. i) Define the transmission angle of a four bar linkage. What is the effect of transmission angle on mechanical advantage? Ii) Briefly explain various thes of constrained motions. Iii) Illustrate crank and slotted mechanism as an inversion of single slider crank chain. Deduce an expression for length of stroke in emms of link lengths.
17. Analytically perform the displacement analysis of four bar mechatisisn.
18. Define kinematic pair and discuss various types of kinematic patts with examples.
19. Draw a neat sketch and explain any one approxinate straight line generating mechanism.
20. Sketch and explain the mechanism obtained by deuble stider crank mechanism.
21. Explain the following mechanism with sketches a) ratchet and escapement mechanism b) Indexing mechanism.
22. In a slider crank mechanism, the lengthorank is 100 mm and length of connecting rod is 375 mm . The crank has an anguar velocity of $20 \mathrm{rad} / \mathrm{s}$ in clockwise direction and retardation of $40 \mathrm{rad} / \mathrm{s} 2$. When the crank has turned 1200 from the inner dead centre find: a) the velocity and aeceleration of piston b) angular velocity and acceleration of connectingrod
23. Explain klein's constraction for slider crank mechanism when the crank rotates with uniform angular velocity.
24. Sketch and explain the various inversions of a four bar chain, What is meant by degrees of freedgm of a mechanism? Explain Kutzbach criterion for determining degree of reedon for mechanisms.
25. Sketch and explain any three kinematic inversion of a single slider crank chain.
26. Explain the following with neat sketches. i) Quick return mechanism ii) Indexing mechanism.
$2 \mathcal{1}$ a whitworth quick return mechanism, driving crank is 15 cm long. The distance between the fixed center is 10 cm . The line of stroke of ram passes through the centre

- of rotation of slotted lever, whose free end is connected to the ram by a connecting link. Determine the ratio of time of cutting to time of return.

28. Sketch the following straight line generators and show the path traced by the point i) Peaucillier mechanism ii) pantograph linkage.
29. Explain with sketches any two inversions of a double slider crank mechanism.
30. In a quick return motion mechanism of crank and slotted lever type the ratio of the maximum velocities is 2 . If the length of stroke is 25 cm find i) the length of the slotted lever, ii) the ratio of times of cutting and return strokes iii) the maximum cutting velocity per second if the crank rotates at 300 rpm .
31. Extend grublers criterion for planar mechanism to obtain the Degree of freedom of a space mechanism as $F=6(L-1)-5 g-4 c-4 s$. where $g=$ total number of sliding pairs, $\mathrm{c}=$ total number of cylindrical pairs, $\mathrm{s}=$ total number of spherical pairs, $\mathrm{L}=$ total number of links.
32. Sketch and explain any two inversions of single slider crank chain.
33. Sketch slider crank chain and its various inversions stating actual machines in which these are used in practice.
34. Sketch and explain the inversion of a 4 bar mechanism, all the four pairs are turning pairs, ii) sketch and explain any two types of straight line motion generating mechanism.
35. Explain the following mechanisms in kinematics point of view i) ratchet pawl mechanism ii) indexing mechanism.
36. State and prove the Kutzbach criteria for the following kinematic chainsi) cam with roller follower ii) two bar chain.
37. Sketch and explain any three inversions of a double slider crank ghain.
38. In a crank and slotted lever quick return motion mechantsm, the distance between the fixed centers is 240 mm and the length of the driving crank is 120 mm . Determine the inclination of the slotted bar with the vertical in the extreme position and the time ratio of the cutting stroke to the return stroke
39. Sketch and describe the various inversions of a double slider crank chain.
40. Explain the working of the following if whitworth quick return mechanism straight-line generator mechanism iifisnap-action mechanism.

UNIT - II (PART - A)

1. Distinguish normal component of acceleration and tangential component of acceleration.
2. In a revolving stage with a speed of 3 rpm , a person is walking with a speed of $0.5 \mathrm{~m} / \mathrm{sec}$ along a radial path. Determine the magnitude of the coriolis component of acceleration in this motion.
3. When coriolis component of acceleration will occur? And what is the magnitude in terms of velocities?
4. Define rubbing velocity at a pint joint, what will be the rubbing velocity at pin joint when the two links move in the opposite directions.
5. When coriolis component of acceleration occur?
6. What type of link will have only centripetal component of acceleration what types of link will have only linear acceleration?
7. Write the condition for coriolis component of acceleration.
8. Define instantaneous centre of velocity?
9. Define the rubbing velocity.
10. Define corioli's component of accelerations
11. What is the magnitude of linear velocity of a point B on a link AB relative to A ?
12. What are the two components of accelerations?
13. State coriolis components of acceleration.
14. What is the expression for coriolis cosponent of acceleration?
15. Define rubbing velocity.
16. What are the two components of aceelerations?
17. How angular velocity of \mathcal{Z} Tink is calculated from a velocity diagram?
18. In context with cam define piich point.
19. Define coriolis conpponent of acceleration.
20. What is the condition for occurance of coriolis acceleration in kinematics chain?
21. Find the expression to determine the relative velocity of a point " A " in a rigid link rotating about a fixed centre O .
22. What is the condition for occurrence of coriolis acceleration in a kinematics chain and give the expression to find its magnitude.
23. State the condition for al ink to experience coriolis acceleration.
24. Define rubbing velocity at a pin joint, what will be the rubbing velocity at pin joint when the two links moves in the same direction.

UNIT - II (PART - B)

1. In a four-bar mechanism $A B C D$, the link lengths in mm are as follows: Input $\mathrm{AB}=$ 25 , coupler $\mathrm{BC}=85$, output $\mathrm{CD}=50$ and frame $\mathrm{AD}=60$. The angle between the frame and the input is 100° measured anti-clockwise. The velocity of point B is 1.25 $\mathrm{m} / \mathrm{sec}$ in the clockwise direction. Sketch the mechanism and determine the velocity
and acceleration of the mid-point of the link BC. Also, find the angular velocity and angular accelerations of the links $B C$ and $C D$.
2. How will you determine the magnitude and direction of the Coriolis Acceleration Vector?
3. State and prove the ARONHOLD-KENNERY theorem involving instantaneous centres.
4. State the reasons for velocity and acceleration analysis.
5. Derive the analytical expression to determine the angular position of the couplerand angular position of the out put link of a four bar crank-rocker mechanism in terms of the link lengths and input angular position.
6. The following data refer to the lengths of links of a six-link mechanism in which the rotary motion of the input link2 is transformed to the horizontal lineak notion of the output slider 6.
i. Fixed link $1, \mathrm{~A}_{0} \mathrm{~B}_{0}=60 \mathrm{MM}$
ii. Input link 2, $\mathrm{A}_{0} \mathrm{~A}=25 \mathrm{MM}$
iii. Coupler link 3, $\mathrm{AB}=85 \mathrm{~mm}$
iv. Follower link $4, \mathrm{BB}_{0}=55 \mathrm{~m}$
v. Connecting rod $5, \mathrm{CD}=60 \mathrm{~mm}$
b. The pin joint C is at the centre of the ink B_{0}. The horizontal line of stroke of the slider passes through the fixed link pivots A_{0} and B_{0}. The angle $\mathrm{B}_{0} \mathrm{~A}_{0} \mathrm{~A}$ is 60°. IN this position, (i) Sketch the mechanism and indicate the data, 2) Draw the velocity diagram determine the linear velocity of the slider, if the input link constant speed is $2 \mathrm{rad} / \mathrm{sec}$ clockwise and (3) Draw the acceleration diagram and determine the linear acceleration of the slider, which is connected at one end of the connecting rod, CD.
7. A four-bar mechanism has the following link length in mm. Input, $\mathrm{A}_{0} \mathrm{~A}=25, \mathrm{AB}=$ 70 , output $\mathrm{B} 0 \mathrm{~B}=45$ and frame $\mathrm{A}_{0} \mathrm{~B}_{0}=60$. Coupler point A is above and B is below the horizontal frame link $\mathrm{A}_{0} \mathrm{~B}_{0}$, respectively. When the input link is in an angular position of 165° gounter clockwise from the frame link, draw the four bar mehenism and locat all the instantaneous centres. If the input link rotates with a constant angular veloeity of $2.5 \mathrm{rad} / \mathrm{sec}$ clockwise, determine the linear velocity of B of the outpu ink and the angular velocity of the output link.
8. What is meant by coincident points in mechanisms? State their significance.

Derive the analytical expression to determine the transmission angle of a four-bar thechanism in terms of the link length and input crank angular position.
10. PQRS is a four bar chain with link PD fixed. The lengths of the links are $\mathrm{PQ}=$ $62.5 \mathrm{~mm}, \mathrm{QR}=175 \mathrm{~mm} ; \mathrm{RS}=112.5 \mathrm{~mm} ;$ and $\mathrm{PS}=200 \mathrm{~mm}$. The crank PQ rotates at $10 \mathrm{rad} / \mathrm{se}$. Draw the velocity and acceleration diagram when angle $\mathrm{QPS}=60^{\circ}$ and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of links QR and RS.
11. In a slider crank mechanism, the length of crank is 200 mm and length of connecting rod 825 mm . The angular velocity and acceleration of crank is $60 \mathrm{rad} / \mathrm{se}$ and 110 $\mathrm{rad} / \mathrm{s}^{2}$. When the crank has turned 120° from the inner dead centre, find a) the
velocity and acceleration of piston b) angular velocity and acceleration of connecting rod.
12. The crank and connecting rod of a theoretical steam engine are 0.5 m and 2 m long respectively. The crank makes 180 rpm in the clockwise direction. When it has turned 45° from the inner dead centre position, determine : a) Velocity of piston b) Angular velocity of connecting rod. C) Velocity of point E on the connecting rod 1.5 m from the gudgeon pin. D) velocity of rubbing at the pins of the crank shaft, ${ }^{\circ}$ crank and crank cross head when the diameters of their pins are 50 mm and 60 mm and 30 mm respectively.
13. In a four link mechanism, the crank AB rotates at $36 \mathrm{rad} / \mathrm{sec}$. The length of the lin̂ks are $\mathrm{AB}=200 \mathrm{~mm}, \mathrm{BC}=400 \mathrm{~mm}, \mathrm{CD}=450 \mathrm{~mm}$ and $\mathrm{AD}=600 \mathrm{nmm}$. $A D$, A the fixed link. AT the instant when $A B$ is at right angle to $A D$, determine the Nolocity and acceleration at the midpoint of the line BC .
14. In four bas chain $\mathrm{ABCD}, \mathrm{AD}$ is fixed and is 120 mm long. The crank AB is 30 mm long and rotates at 100 rpm clockwise. While the link $\mathrm{CD}-60 \mathrm{~mm}$, oscillates about $\mathrm{D} ; \mathrm{BC}$ and AD are equal length. Find the angular vetocity of link CD when angle $\mathrm{BAD}=60^{0}$.
15. Define the term coriolis component of acceleration and derive its equation.
16. The following data refer to the lengths of link of a six-link mechanism in which the rotary motion of the input link 2 is transformed to the horizontal linear motion of the output slider 6. i) Fixed link $1, \mathrm{~A}_{0} \mathrm{~B}^{2}=60 \mathrm{~mm}$, ii) Input link $2, \mathrm{~A}_{0} \mathrm{~A}=25 \mathrm{~mm}$, iii) Coupler link 3, $\mathrm{AB}=85 \mathrm{~mm}$, Followerlink $4, \mathrm{BB}_{0}=55 \mathrm{~mm}$, v) Connecting rod 5, CD $=60 \mathrm{~mm}$. The pin joint C is at the centre of the link BB_{0} horizontal line of stroke of the slider passes through the fixed link pivots A_{0} and $\mathrm{B}_{0} \ll \mathrm{~B}_{0} \mathrm{~A}_{0} \mathrm{~A}$ is 60°. In this position, i) sketches the mechanism and indicate the data, ii) Draw the velocity diagram and determine the tinear velocity of the slider, if the input link constant speed is $2 \mathrm{rad} / \mathrm{s}$ clockwise, iii) Draw the acceleration diagram and determine the linear acceleration of the slider, which is connected at one end of the connecting rod, CD.
17. A four-bar méchanism has the following link lengths in mm, Input, $A_{0} A=25$, coupler, $A B=70$, Outpul $B_{0} B=45$, and frame $A_{0} B_{0}=60$. Coupler point A is above and B is below the borizontal frame link $\mathrm{A}_{0} \mathrm{~B}_{0}$, respectively. When the input link is an angular positian of 105° counter clockwise from the frame link, draw the four bar mechanism and locate all the instantaneous centres. If the input link rotates with a constant
angelar velocity is $2.5 \mathrm{rad} / \mathrm{s}$ clockwise, determine the linear velocity of B of the Vutput link and the angular velocity of the output link.
18. What is meant by coincident points in mechanisms? State their significance.
19. Derive the expression for determining the angular position of the coupler link and the output link of a four bar mechanism.
20. In a steam engine mechanism shown in figure a) the crank AB rotates at 200 rpm . The dimensions of various links are $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=48 \mathrm{~cm}, \mathrm{CD}=18 \mathrm{~cm}$ and $\mathrm{DE}=$ $36 \mathrm{~cm}, \mathrm{EF}=12 \mathrm{~cm}$ and $\mathrm{FP}=36 \mathrm{~cm}$. Find the velocities of C,D,E,F and P.

21. In the mechanism shown in figure, the crank OA rotates at 20 rpm anticlockwise and gives motion of sliding blocks B and D . The dimens ons various links are $\mathrm{OA}=$ $300 \mathrm{~mm}, \mathrm{AB}=1200 \mathrm{~mm}, \mathrm{BC}=450 \mathrm{~mm}$ and CD 450 mm . For the given configuration determine i) velocities of sliding at B and D, ii) angular velocity of $C D$ iii) Linear acceleration of D and iv) angular acceleration of CD .

22. In atoggle mechanism shown in figure a) the slider D is constrained to move on a horizontal path. The crank OA is rotating in the counter clockwise direction at a speed of 180 rpm . The dimensions of various links are as follows $\mathrm{OA}=180 \mathrm{~mm}, \mathrm{CB}$ $240 \mathrm{~mm}, \mathrm{AB}=360 \mathrm{~mm}$ and $\mathrm{BD}=540 \mathrm{~mm}$. For the given configuration, find, i) - velocity of slider D, ii) Angular velocity of links $A B, C B$ and $B D$, iii) Velocities of rubbing on the pins of diameter 30 mm at A and D and iv) Torque applied to the crank OA , for a force of 2 KN at D .

23. The dimensions and configuration of the four bar mechanism as shown figure. $\mathrm{P}_{1} \mathrm{~A}$ $=300 \mathrm{~mm} ; \mathrm{P}_{1} \mathrm{~B}=360 \mathrm{~mm} ; \mathrm{AB}=360 \mathrm{~mm}$ and $\mathrm{P}_{1} \mathrm{P}_{2}=600 \mathrm{~mm}$. Therngle $\mathrm{AP}_{1} \mathrm{P}_{2}=60^{\circ}$. The crank $P_{1} A$ has an angular velocity of 10 radian $/ \mathrm{sec}$ and an angular acceleration of $30 \mathrm{rad} / \mathrm{s} 2$, both clockwise. Determine the angular velocity and angular accelerations of $\mathrm{P}_{2} \mathrm{~B}$ and AB and the velocity and acceleration of the joint B .

24. Figuresho the mechanism of a radial valve gear. The crank OA turns uniformly at 150 revelution per minute and is pinned at A to rod $A B$. The point C in the rod is guided in the circular path with D as centre and CD as radius. The dimensions of Carious links are : $\mathrm{OA}=150 \mathrm{~mm} ; \mathrm{AB}=550 \mathrm{~mm} ; \mathrm{AC}=450 \mathrm{~mm} ; \mathrm{DC}=500 \mathrm{~mm} ; \mathrm{BE}=$ $\$ 50 \mathrm{~mm}$. Determine the velocity and acceleration of the ram E for the given position - of the mechanism.

25. In a Whitworth quick return motion, as shown in figure. OAvis ar crank rotating at 30 revolutions per minute in a clockwise direction. The dimensions of various links are $\mathrm{OA}=150 \mathrm{~mm} ; \mathrm{OC}=10 \mathrm{~mm} ; \mathrm{CD}=125 \mathrm{~mm} ;$ and $\mathrm{DR}^{\mathbf{R}} 500 \mathrm{~mm}$. Determine the acceleration of the sliding block R and the angular actelerating of the slotted level CA.

26. In the nechanism shown in figure, O and Q are fixed centers. The crank $O C$ revolves at aniform speed of 120 rpm . Draw the velocity diagram and find the velocity of C in the giyen configuration. Find the angular acceleration of links CP, PA and AQ.

27. The driving crank AD of the quick - return mechanism as shown in figure. Revolves at a uniform speed of 200 rpm . Find the velocity and acceleration of the tool-box R, in the position shown, when the crank makes an angle 60° with the vertical line of centers PA. What is the acceleration of sliding of the block at B along the slotted lever PQ ?

28. For the toggle mechanism as shown in figure, the slider D is constrained to move along horizontal direction. The crank rotates at 180 rpm . The dimensions of various Chnks are as follows. $\mathrm{OA}=180 \mathrm{~mm} ; \mathrm{CB}=240 \mathrm{~mm} ; \mathrm{AB}=360 \mathrm{~mm} ; \mathrm{BD}=540 \mathrm{~mm}$. For The given configuration determine the velocity of the solider and angular velocity of - links AB, BC and BD . Also determine the linear acceleration of the slider D

29. A four bar chain mechanism $A B C D$ with its dimensions isshown in figure. It is driven by the crank AB which rotates at 600 rpm in clock wise direction. The link AD is fixed. Find the absolute velocity of point C and angular velocity of links CB and CD.

1. State the aqvantages of cam mechanism over linkage mechanisms.
2. Brieffy write about undercutting in cam mechanisms.
3. Define pressure angle of a cam mechanism and state the best value of the pressure Cangle.
4. State the advantages of tangent cam and sketch it.
5. What are the different types of followers? And sketch them.
6. Write the equation for the maximum velocity and maximum acceleration of a follower move with (S.H.M).
7. Sketch any four types of cam followers.
8. Sketch a cylindrical cam, the follower reciprocates in a direction parallel to the cam axis and also a cylindrical cam with oscillating follower.
9. Derive the equation to determine the maximum velocity and the maximum acceleration when the follower has simple harmonic motion.
10. What are the advantages of roller follower than knife-edge follower?
11. Sketch the displacement velocity and acceleration diagram when a follower moves with uniform velocity.
12. What are high speed cams? Give examples?
13. Construct the displacement diagram for the follower motion to be cycloidal.
14. State the expressions for the maximum velocity and acceleration of a follower moves with cycloidal motion
15. What is prime circle of a cam? What is the radial distance between the prime cirele and base circle for a cam with knife edge follower?
16 . Where are the roller follower extensively used?
16. Define pressure angle with respect to cams.
17. Define a cam.
18. What are the motions of follower?

20 . What is cam?
21. What are the different motions of the follower?
22. Sketch any four types of follower used in cam.
23. Give some examples for cams.
24. What is high speed cam?
25. What type of follower is suitable for high speed Cam? Give reasons.
26. Discuss the effect of pressure angle and undereuting in cams.
27. Sketch any four types of follower with candarangement.
28. State the advantages of tangent cam andsketch it.
29. Draw at least any four types of cam mitt followers.
30. What are the different types of metion with which a follower can move?
31. Illustrate the profile of displacement velocity and acceleration of a point moves with cycloidal motion.
32. What are the advantages of roller follower than knife edge follower?
33. Sketch th displacement, velocity and acceleration diagram when a follower moves with uniform velocity.
34. Define the following terms as applied to cam.
a. Bacericle
titeh circle
Prime circle
55. Draw the displacement and velocity diagrams for a follower moves with simple Harmonic motion.

UNIT - III (PART - B)

1. Sketch a cam-roller follower arrangement indicating important cam terminologies and explain them in detail.
2. Sketch and briefly compare the displacement, velocity and acceleration diagrams for uniform velocity, uniform acceleration and retardation, simple harmonic motion and cycloidal motion, used in cam mechanisms.
3. A disc cam used for moving a knife edge follower with simple harmonic motion during life and unofrm accelerations and retardation motion during return rotates in clockwise direction at 300 rpm . The line of motion of the follower has an offset 10 mm to the right of camshaft axis. The minimum radius of the cam is 30 mm . The lift of the follower is 40 mm . The cam rotation angles are : Life 60°, dwell 90°, return 120° and remaining angle for dwell. Draw the cam profile and determine the maximum velocity and acceleration during the lift and return.
4. The following data are for a disc cam mechanism with roller follower. Mininnm radius of the cam $=35$, life of the follower $=40 \mathrm{~mm}$, offset of the follower $=10 \mathrm{~mm}$ right, Roller diameter $=15 \mathrm{~mm}$, Cam rotation angles are as mentioned below. Auring ascent $+120^{\circ}$, Dwell $=80^{\circ}$, During decent $=80^{\circ}$, Dwell $=80^{\circ}$. Can rotates in clockwise direction and the follower motion is simple harmonic during both ascent and descent. I) Draw the displacement diagram of the follower and indicate the relevant data. 2) Draw the cam profile and indicate the relevani dâta.
5. Classify with neat sketches the cam followers according to thery shape, location and motion. State also their advantages, if any, with respect to other follower.
6. Sketch neatly the displacement, velocity and accelerafion curves of a cycloidal motion followers. Why is it superior over other motion earves?
7. Briefly explaining the undercutting in cam meehanisms.
8. A cam rotating clockwise with uniform speed is to give the roller follower of 20 mm diameter of the following motion: i) Fetrower move outwards through a distance of 30 mm during 120° of cam rotation, Fellower to dwell for 60° of cam rotation. Iii) Follower to return to its initial positior during 90° of cam rotation. iv) Follower to dwell for the remaining 90° 亿 the cam rotation. The minimum radius of cam is 45 mm and the line of stroke of the follower is off-set 15 mm from the axis of the cam and the displacement of the follower is to take pl ace with simple harmonic on both the outward and retum stroke,. Draw the cam profile if the cam rotates at 360 rpm anticlockwise. Find the maximum velocity and acceleration of the follower during descent.
9. In a symmetrical tangent cam operating a roller follower, the least radius of cam is 30 mm and roller radius is 17.5 mm . The angle of ascent is 75° and total lift is $17,5 \mathrm{~nm}$. The speed of the cam shaft is 600 rpm . Calculate i) the principal dimension of camp ii) the acceleration of the follower at the beginning of the lift, where straight Clank merges into the circular nose and the apex of the circular nose. Assume that the is no dwell between ascent and descent.
10. A cam is to be designed for a knife edge follower with the following data: i) cam lift = 40 mm during 90° of cam rotation with simple harmonic motion. Ii) Dwell for the 30°. Iii) During the next 60° of cam rotation, the follower return to its original position with simple harmonic motion. iv) Dwell for the remaining 180°. Draw the profile of the cam when the line of stroke is offset 20 mm from the axis of the cam shaft.
11. Draw the profile of the cam when the roller follower moves with cycloidal motion as given below: i) Outstroke with maximum displacement of 44 mm during 180° of cam rotation. ii) Return stroke for the next 150° of cam rotation. iii) Dwell for the remaining 30° of the cam rotation. The minimum radius of the cam is 20 mm and the
diameter of the roller is 10 mm . The axis of the roller follower passes through the cam shaft axis.
12. The following particulars relate to a symmetrical circular cam operating a flat faced follower: Least radius $=16 \mathrm{~mm}$, nose radius $=3.2 \mathrm{~mm}$, distance between cam shaft centre and nose centre $=25 \mathrm{~mm}$, angle of action of cam $=150^{\circ}$ and cam shaft speed $=$ 600 rpm . Assuming that there is no dwell between ascent of descent, determine the lift of the valve, the flank radius and the acceleration and retardation of the followerat a point where circular nose merges into circular flank.
13. A cam rotating clockwise at a uniform speed of 100 revolutions per minutes? is required to give motion to knife-edge follower as below: i) Follower to move outwards through 25 mm during 120° of cam rotation. ii) Follower to dyvell for the next 60° of cam rotation, iii) Follower to return to its starting position curfing next 90° of cam rotation with equal uniform acceleration and retardation. the minimum radius of the cam is 50 mm and the line of stroke of the follower passes through the axis of the cam shaft. If the displacement of the follower takesplace with uniform and equal acceleration and retardation on both the outward and return strokes, find the maximum velocity and acceleration during outstere and return stroke and draw the profile of the cam.
14. The suction valve of a four stroke petrol erinine is operated by a circular arc cam with a flat faced follower is 10 mm ; base cixctediameter of the cam is 40 mm and the nose radius is 2.5 mm . The crank angle when suction valve opens is 4^{0} after top dead centres and when the suction vatve closes, the crank angle is 50° after bottom dead centre. If the cam shaft rotaté at 600 revolutions per minutes determine i) maximum velocity of the valve and io maximum acceleration and retardation of the valve.
15. A cam drives a flat reciprocating follower in the following manner: Druing first 120^{0} rotation of the cam the follower moves outwards through a distance of 200 mm with SHM. The follower dwells during 30° of cam rotation during next 120° of cam rotations, the follower moves inwards with SHM. The follower dwells for the next 90° of can rotation. The minimum radius of the cam is 25 mm . Draw the profile of the can.
16. In a symmetrical tangent cam operating a roller follower, the least radius of the cam is 30 mm and roller radius is 17.5 mm . The angle of ascent is 750 and the total lift is C 7.5 mm . The speed of the cam shaft is 600 rpm . Calculate i) the principal dimensions of the cam ii) the acceleration of the follower at the beginning of the lift ii) the

- acceleration of the follower where straight flank merges into a circular nose.

17. A cam with minimum radius of 25 mm , rotating in clockwise direction with a uniform speed of 100 rpm is to be designed to given motion for the follower followers.
18. Construct a tangent cam and mention the important terminologies on it. Also derive the expression for displacement, velocity, acceleration of a reciprocating roller follower when the roller has contact with the nose.
19. Draw the cam profile to operate a knife edged follower to ascent and descent in uniform velocity motion. Lift of the follower $=30 \mathrm{~mm}$; least diameter of cam $=$ 60 mm ; angle of ascent $=90^{\circ}$; angle of dwell after ascent $=40^{\circ}$; angle of descent $=$
120°; Follower to dwell for rest of the cam rotation. The axis of the follower passes through the axis of the cam.
20. Layout the profile of a cam operating a roller reciprocating follower for the following data. Lift of follower $=30 \mathrm{~mm}$; Angle during the follower rise period $=120^{\circ}$; angle during the follower after rise $=30^{\circ}$; angle during the follower return period $=150^{\circ}$. Angle during which follower dwell after return $=60^{\circ}$; minimum radius of cam $=$ 25 mm ; Roller diameter $=10 \mathrm{~mm}$. The motion of follower is uniform acceleration and ${ }^{\circ}$ deceleration during the rise and return period.
21. Use the following data to draw the cam profile to operate the follower during the ascent and descent period in uniform velocity motion. 1) Lift of the follower 10 m 2) least radius of cam $=50 \mathrm{~mm} 3$) angle of ascent $=60^{\circ} 4$) angle of dwedr between ascent and descent $=45^{\circ} 5$) angle of descent $=90^{\circ}$. Follower to dwelr forthe rest of the cam rotation. The axis of the follower passes through the axis of the cam. If the cam rotates at 200 rpm , determine the maximum velocity and acceleration during ascent and descent.
22. Lay out the profile of cam in which the follower moves twith cycloidal motion during ascent and descent motion. Minimum radius of can -50 mm , angle of ascent $=60^{\circ}$ angle of dwell between ascent and descent $=60$, angle of descent $=120^{\circ}$, remaining period is dwell, lift of follower $=40 \mathrm{~mm}$; dise distance between line of action of follower and axis of cam $=20 \mathrm{~mm}$
23. Draw the displacement, velocity and arceleration diagrams for a follower when it moves with uniform acceleration andiform retardation. Derive the expression for velocity and acceleration during out stroke and return stroke of the follower.
24. Draw the profile of an cam operating a knife-edge follower when the axis of the follower passes through the axis of cam shaft from the following data. 1) follower to move outwards through 40 nn during 60° of cam rotation. 2) follower to dwell for the next 45° 3) Follower to return to its original position during next 90°. 4) Follower to dwell for the rest of the cam rotation. The displacement of the follower is to take place with SKM during both the outward and the return strokes. The least radius of cam is 50 mm . If the cam rotates at 300 rpm , determine the maximum velocity and acceleation of the follower during the outward stroke and return stroke.
25. Draw the profile of a cam operating with a knife edge follower having a lift of 30 mm . The coun rises the follower with SHM for 150° of its rotation followed by a period of Cwell for 60°. The follower descends for the next 100° rotation of the cam with veniform velocity, again followed by a dwell period. The cam rotates at a uniform

- velocity of 120 rpm and has least radius of 20 mm what will be the maximum velocity and acceleration of the follower during the lift?

26. Write the short notes on: i) High speed cams ii) circular arc cams iii) Tangent cams
27. Design a cam to raise a valve with simple harmonic motion through 15 mm is $1 / 3^{\text {rd }}$ of a revolution, keep it fully raised through $1 / 12^{\text {th }}$ of a revolution and to lower it with SHM in $1 / 6^{\text {th }}$ of a revolution. The valve remain closed during the rest of the revolution. The diameter of the roller is 20 mm and the minimum radius of the cam is 25 mm . The axis of the valve rod passes through the axis of the cam shaft. If the cam
shaft rotates at uniform speed of 100 rpm ; find the maximum velocity and acceleration of the valve during raising and lowering. Also draw the profile of the cam.
28. A cam, with a minimum radius of 50 mm , rotating clock wise at uniform speed, is required to give a knife edge follower the motion as described below; to move outwards through 40 mm during 100° rotation of the cam; to dwell for next 80°; to return to its starting position during next 90° and to dwell for the rest of the period of ${ }^{\circ}$ revolution. Draw the profile of the cam when the line of the follower is off-set by 15 mm to the right. The displacement of the follower is to take place with uniform retardation. Determine the maximum velocity and acceleration of the followeryhen the cam shaft rotates at 900 rpm .
29. Classify with neat sketches the cam follower according to their shape, location and motion. State also their advantages, if any, with respect to other followe
30. Sketches neatly the displacement, velocity and acceleration atityes of a cycloidal motion follower. Why is it superior over other motion curves?
31. Briefly explain the undercutting in cam mechanisms.
32. Draw the profile of a cam for operating the exhatst valve of a oil engine. It is required to give equal uniform acceleration and retardation during opening and closing of the valve each of which corresponds to 60° of cam rotation. The valve must remain in the fully open position for 280 of the cam rotation. The lift of the valve is 37.5 mm and the least radius, f the cam is 40 mm . The follower is provided with roller of radius 20 mm and its line istroke passes through the axis of the cam.
33. It is required to set out the profile a cam to give the following motion to the reciprocating follower with a mushroom contact face: i) follower to have a stroke of 20 mm during 120° of catm rotation. ii) follower to dwell for 30° of cam rotation iii) follower to return to its position during 120° of cam rotation. iv) follower to dwell for the remaining period. The minimum radius of the cam is 25 mm . The outstroke of the follower is performed with simple harmonic motion and the return stroke with equal uniforn acceleration and retardation. Draws the profile of the cam.
34. A symmetrical circular cam operating a flat faced follower has the following particu(ars Minimum radius of the cam $=30 \mathrm{~mm}$; Total lift $=20 \mathrm{~mm}$; Angle of lift $=$ 75^{0}, yose fadius $=5 \mathrm{~mm}$; speed $=600 \mathrm{rpm}$. Determine i) the principal dimensions of (the cam ii) acceleration of the follower at the beginning of lift, at the end of the confact with the circular flank, at the beginning of contact with the circular flank, at the beginning of contact with the nose and at the apex of the nose.
35 . Draw the profile for the disc cam offset 20 mm to the right of the centre of the cam shaft. The base circle diameter is 75 mm and the diameter of the roller is 10 mm . The follower is to move outward a distance 40 mm with SHM in 140° of the cam rotation to dwell for 40° of cam rotation to move inward with 150° of cam rotation with uniform acceleration and retardation. Calculate the maximum velocity and acceleration of the follower during each stroke if the cam-shaft rotates at 120 rpm .
35. A cam of base circle diameter 50 mm has tangent flanks and operates a follower through a roller of radius 5 mm . The path of the roller centre is a straight line passing through the cam shaft axis, The follower acts against a spring of stiffness $5 \mathrm{~N} / \mathrm{mm}$
and initial compression is 8 mm . The total effective mass of the follower is 3 Kg and the spring mass is 1 Kg . Assume $1 / 3$ mass as the effective mass of spring due to inertia effects. Find the torque exerted on the cam shaft when it is rotating at $40 \mathrm{rad} / \mathrm{s}$ and the cam has turned through an angle 30° from the point at which the roller makes contact with the flank. Neglect the effect of friction.

UNIT - IV (PART - A)

1) State the relationship between circular pitch and the module.
2) Briefly write about reverted gear train with suitable sketch.
3) Prove or disprove that in a spur gear pair, pure rolling occurs offy ane point along the path of contact.
4) What is meant by a n epicyclic gear train? Give a practicat enample.
5) Explain the term interference in gears? And write any one pethod to prevent it.
6) Differentiate between simple gear train and epicycl ce geandrain.
7) State law of gearing.
8) Explain the term interference as applied to geats.
9) Define: 1, normal pitch 2. Axial pitch reatingto helical gears.
10) What is meant by contact ratio in gear? And writ the equation to determine this valve.
11) How to change the direction of ration of the output gear in simple gear train without changing the direction of ration of input gear.
12) State the condition for constantvelocity ratio of toothed wheels.
13) Derive the minimum force yequired to slide a body on a rough horizontal surface.
14) Define the law of gearing with the equation.
15) What are the principal reasons for the use of non-standard gears?
16) What is axial pitch of a helical gear?
17) List out the applications of epicyclic gear train.
18) Define interference.
19) What is meant by compound gear train?

20 What is law of gearing?
21) Wat is epicyclic gear train?
82) State law of gearing?
23) What are the method to avoid interference?
24) Define circular pitch.
25) What are the types of gear trains?
26) What is the interference in involute teeth?
27) Define velocity ratio of an epicyclic gear train.
28) Define the term interference as applied to gears.
29) State and prove law of gearing.
30) State any two advantages of involute gears.
31) Define the following terms in a supper gear tooth. A) module b) Pressure angle.
32) What are the various types of torques in a n epicyclic gear train?
33) Define the following terms in a super gear tooth.

Circular pitch
Diametral pitch
Module
Pressure angle
34) Distinguish between simple gear train and epicyclic gear train.
35) Prove or disprove the pure rolling is possible at one point only, on the line of action, between two meshing gear teeth profiles.
36) Define the terms "interference" ass applied to gears. Suggest any one methodto avoid the same.
37) What is the advantages of epicyclic gear train and state any two applrations of it?

$$
\underline{\text { UNIT - IV (PART - B })}
$$

1. Two gear wheel mesh externally to give a velocity ratio of 3. The involute tooth has 6 mm module and 20° pressure angle. Addendum is equat to one module. The pinion rotates at 90 rpm . Determine (i) number of teeth an pinion to avoid interference and the corresponding number on the wheel (ii) the rength of path and arc of contact (iii) contact ratio and (iv) the maximum velocity of sliding.
2. In a reverted gear train, the arm A carrigs two gears S_{1} and S_{2} and a compound gear P_{1} $-P_{2}$. The gear S_{2} meshes with gear P and gear S_{2} meshes with gear P_{2}. The numbers of teeth on $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and P_{2} are 8048 and 72 respectively. Find the speed and direction of gear S_{2} when gear S_{1} is fixed antel arm A makes 400 rpm counter clockwise.
3. State the advantages of sur sear over helical gear, which type of gear pair is to be used to get very large speedreduction in a single stage? State the reason.
4. State and prove the fundamental law of gearing, determine the minimum number of teeth to avoid interference in worst case of meshing with $14 \frac{1 / 2}{}{ }^{0}$ pressure angle.
5. Derive the equation to determine the length of path of contact between two spur gears of different size.
6. Briefly explain the sub-classification of compound gear trains, with neat sketches.
7. Arfeprcyclic gear train consisting of fixed sun gear, S with 50 teeth meshing with a planet gear, P with 40 teeth. The planet gear meshes with a ring gear, R with 60 teeth. Betermine the speed of the ring gear when the Arm A which carries the planet gear rotates at a speed of 100 rpm clockwise about the sun gear centre axis.
8. Find the length of arc of contact and maximum sliding velocity between mating gear teeth if module pitch $=4.25 \mathrm{~mm}$, addendum $=1$ module, pressure angle 20°, rpm of pinion $=150$, no of teeth of gears 24 and 33.
9. A pair of 20° full depth involute spur gears having 30 and 50 teeth respectively of module 4 mm are in mesh. The smaller gear rotates at 1000 rpm . Determine i) sliding velocities at engagement and at disengagement of pair of a teeth and ii) Contact ratio.
10. A pinion having 20 involute teeth of module pitch 6 mm rotates at 200 revolutions per minutes and transmits 1.5 KW to a gear wheel having 50 teeth. The addendum on
both the wheels is $1 / 4$ of the circular pitch. The angle of obliquity is 200 . Find the i) length of the path of approach; ii) the length of the arc of approach, iii) the normal force between the teeth at an instant where there is only pair of teeth in contact.
11. Two mating involute spur gears of 20° pressure angle have a gear ratio of 2 . The number of teeth on the pinion of 20 and its speed is 250 revolution per minute. The module pitch of the teeth is 12 mm . If the addendum on each wheel is such that the path of approach and the path of recess on each side are half the maximum possible length each, find i) the addendum for pinion and gear wheel; ii) the length of arc contact; iii) the maximum velocity of sliding during approach and recess. Assume pinion to be driver.
12. A pinion with 20 teeth and 125 mm pitch circle diameter drives a rack. The addendum of both pinion and rack is 6.25 mm . What is the least pressure angle Qhich can be used to avoid interference? With this pressure angle, find the lerigth of the arc of contact and the minimum number of teeth in contact at a time
13. An Internal when B with 80 teeth is keyed to a shaft F. A fixedinternal wheel C with 82 teeth is concentric with B. A compound wheel D gears with the two internal wheel; D has 28 teeth and gears with C while E gears with B . The compound wheels revolve freely on a pin which projects from a dise keyed to a shaft A makes 800 rpm , What is the speed of the shaft F?. Sketch the arrangements.
14. What is reverted gear train? Explain the aragement of various gears in a reverted gear train and express the characteristic equation used to define their operation.
15. I) State and prove law of gearing, ir A parr of involute spur gears with 16° pressure angle and pitch of module 6 mm is in mresh. The number of teeth in pinion is 16 and its rotational speed is 240 rpm .
16. The gear ratio is 1.75 . In order to avoid the interference, determine i) addenda on pinion and wheel. ii) length df path of contact iii) Maximum velocity of sliding on either side of pitch point.
17. Two 20° involute spur gears have a module of 10 mm . The addendum is one module. The larger gear has 50 teeth and pinion has 13 teeth. Does the interference occur? If it occurs, to what value should the pressure angle be changed to eliminate interference?
18. Derive an expression for the minimum number of teeth required on the pinion to avoidthe-interference in involute gears.
19. A simple sun and planet gear consists of an annular gear having 120 teeth, a sun gear Chaving 50 teeth and two identical planet gears. Determine a) Number of teeth on each planet gears. B) speed of the arm when gear A makes one revolution clock wise and

- gear D- makes $1 / 2$ revolution anticlockwise.

20. Two 20° involute spur gears mesh externally and give a velocity ratio of 3 . Module is 3 mm and the addendum is equal to 1.1 module. If the pinion rotates at 120 rpm , determine i) the minimum number of teeth on each wheel to avoid interference, ii) the number of pairs of teeth in contact.
21. In an epicyclic gear train, an arm carries two gears A and B having 24 and 30 teeth respectively. The arm rotates at 100 rpm in the clockwise direction. Find the speed of gear B on its own axis, when the gear A is fixed. If instead of being fixed, the
wheel A rotates at 200 rpm in the counter clockwise direction, what will be the speed of B?
22. Draw a neat sketch of spur gear and explain the following : a) Module b) Circular pitch c) Diametric pitch d) pressure angle e) Addendum and f) Dedendum
23. In an epicyclic gear train an annular wheel A having 54 teeth meshes with a planet wheel B which gears with a sun wheel C, the wheels A and C being coaxial. The wheel B is carried on a pin fixed on one end of arm P which rotates about the axis of ${ }^{\circ}$ the wheels A and C. If the wheel A makes 20 rpm in a clockwise sense and the arm rotates at 100 rpm in the anticlockwise direction and the wheel C has 24 teeth, determine the speed and sense of rotation of wheel C.
24. Two gear wheels mesh externally and are to give a velocity ratio of 3. The reeth are of involute form of module 6 . The standard addendum is 1 module. If the pressure angle is 180 and pinion rotates at 90 rpm , find i) the number of teeth orbeach wheel, so that the interference is just avoided, ii) the length of the path of contact and iii) the maximum velocity of sliding between the teeth.
25. State the advantages over spur gear over helical gear, \ddot{i} Fwhich type of fear pair is to be used to get very large speed reduction in a single stagè State the reason, iii) State and prove the fundamental law of gearing.
26. A pair of 20° full depth involute spur gears ing 30 and 50 teeth respectively of module 4 mm are in mesh. The smaller gean rotates at 1000 rpm . Determine i) sliding velocities at engagement and at disengageaten of pair of a teeth and ii) contact ratio.
27. Derive an expression for minimumer of teeth on the wheel in order to avoid interference.
28. Two mating gear have 20 and 40 involute teeth of module 10 mm and 20° pressure angle. The addendum oneath wheel is to be made of such a length that the line of contact on each side of the pitch point has half of the maximum possible length. Determine the addendum height for each gear wheel, length of the path of contact, are of contact and contact ratio.
29. Explain the procedure adopted for designing the spur wheels.
30. A gear whee having 20 teeth of involute form of module pitch 6 mm an angle of obliquity of 20 degrees drives another wheel of the same dimensions. Calculate the length of the arc of contact is the addendum is one module. If the addendum was altered so that the arc of contact was the maximum possible what would be the length of this are, and the addendum required for this?
31.An epicyclic gear train for an electric motor, is shown in figure. The wheel S has 15

- teeth and is fixed to motor shaft rotating at 1450 rpm . The planet P has 45 teeth, gears with fixed annular A and rotates on a spindle carried by an arm which fixed to output shaft. The planet P also gears with the sun when S. Find the speed of output shaft. If motor is transmitting 2 KW find the torque required to fix the annular.

32. In a reverted epicyclic gear train as shown in figure; the arm A catriee wo gears B and C and a compound gear D-E. The gear B meshes with gear E and the gear C meshes with gear D . The number of teeth on gears B, C and O are 75,30 and 90 respectively. Find the speed and direction of gear C whengear is fixed and the arm A makes 100 rpm clockwise.

33. An ericychc gear train is shown in the figure. How many revolutions does the arm makes, 1) When A makes one revolution in clockwise and D makes $1 / 2$ a revolution in Cthe opposite sense. 2) When A makes one revolution in clockwise and D remains Stationary. The number of teeth in gears A and D are 40 and 90 respectively.

34. An epicyclic gear train as shown in figure is composed of a fixed anntlar wheel A having 150 teeth. The wheel A is meshing with wheel B which drives wheel D through an idle wheel C, D being concentric with A . The wheels B and C are carried on an arm which revolves clockwise at 100 rpm about the axis of A and D. If the wheels B and D have 25 and 40 teeth respectively, determine the number of teeth on C and speed and sense of rotation of wheel C .

35. Figute shown an epicyclic gear train known as ferguson's paradox. Gear A is fixed to the frame and is therefore stationary. The arm B and gears C and D are free to rotate Qn the shaft S. Gears A, C and D have 100,101, and 99 teeth respectively. The planet - gear has 20 teeth. The pitch circle diameters of all are same so that the planet gear P meshes with all of them. Determine the revolutions of gears C and D for one revolution of the arm B.

36. A compound epicyclic gear is shown in figure. The gears A, 15 Am are free to rotate on axis P. The compound gears B and C rotate together the axis Q at the end of arm F. All the gears have equal pitch. The number ofexternal teeth on gears, A B and C are 18,45 and 21 respectively. The gears D and E are annulus gears. The gear A rotates at 100 rpm in anticlockwise direction and the gear D rotates at 450 rpm clockwise. Find the speed and direction of thearm and the gear E.

UNIT - V (PART - A)

1. State the law of dry frictions.
2. The coefficient of friction between the belt and the pulley in a belt drive is 0.3 . The angle of lap is 165°. If the tension on the tight side is 3000 N , determine the tension on the slack side.
3. Prove or disprove that the efficiency of a screw jack is independ3ent of the load raised.
4. State the condition and the equation for the velocity of the belt for the transmission of maximum power in a flat belt drive.
5. Sketch a compound epicyclic gear train.
6. State the laws of dry-fricition.
7. Obtain an expression for length of an open belt drive.
8. What is the minimum force required to slide a body on a rough horizontal plane?
9. What is the condition for self locking in screws?
10. Find the power transmitted by a flat belt over a pulley of 600 mm in diameter at 200 revolutions pr minutes. The maximum and minimum tensions in the blt are 2500 N and 124 N .
11. Write the equation to determine the efficient of a screw jack.
12. Sketch the displacement velocity and acceleration diagram when a follower ing ines with uniform velocity.
13. What do you means by friction angle?
14. What are the significance of friction with regard to power tranimission devices like clutches and bearings?
15. What is the condition of maximum efficiency of a screw jaek?
16. What are the advantages of wire ropes over fabric røpes?
17. Why self-locking screws have lesser efficiency?
18. What are the functions of clutches?
19. What is dynamic friction?
20. What is the function of a clutch in automobiles?
21. What is the ratio of driving tension in flat belt?
22. State the laws of dry friction.
23. What is the effect of centrifugal tension in belt drives?
24. What do you mean by limiting frictions?
25. What is friction angle?
26. State the condition for self-locking of screw jack?
27. Which of the two assumptions - Uniform intensity of pressure or uniform rate of war would be tecommended while designing a clutch?
28. Explain the terms slip and creep in a belt drive.
29. What is the oondition for self-locking in screws.
30. How centrffugal tension affects the power transmission in belt drive?

31 Define the term "Limiting friction".
32. What is the minimum force required to drag a body on a rough (friction) surface (a) when the force is horizontal and (b) the force is inclined at an angle of " θ " to the horizontal.

- 33. State the law of dry or solid friction.

34. Distinguish or disprove that the efficiency of a screw jack is independent of the load raised.
35. State the condition and equation for the velocity of the belt for the transmission of power in a flat belt drive.
36. What is the function of friction clutch? Name two types of friction clutch used in practice?
37. Define efficiency of a screw jack in term of helix angle of screw and friction angle.

UNIT - V (PART - B)

1. Prove or disprove the following statement - " Angle of friction is equal to angle of repose"
2. A bolt is having V-threads. The pitch of threads is 5 mm and the V-angle is 550 . The mean diameter of the bolt is 20 mm . The bolt is tightened by screwing a nut. The mean radius of the bearing surface of the nut is 25 mm . The load on the bolt is 5000 N . The co-efficient of friction for nut and bolt is 0.1 whereas for nut and bearing surface, is 0.16 . Determine the force required at the end of a spanner 0.6 m long.
3. Briefly explain the following : 1) Slip of the belt 2) Creep of the belt.
4. An open belt drive connects two pulleys of 1.2 m and 0.5 m diameters phy parallel shafts 4 m apart. The maximum tensions in the belt is 1800 N . The coefficient of friction is 0.3 . The driven pulley of diameter 1.2 m runs at 250 pm alculate the length of the belt required, the power transmitted and the totque on each of the two shafts.
5. An effort of 1200 N is required to just to move a certain body up an inclined plane of angle 12^{0} with force acting parallel to the plane the angle of inclination is increased to 15°, then the effort required is 1400 N . Find the co-efficient of friction and the weight of the body.
6. The efficiency of a screw jack is 55%, when $10 a d$ of 1500 N is lifted by an effort applied at the end of a handle of length $\Upsilon .5 \mathrm{~m}$) Determine the effort applied if the pitch of the screw thread is 10 mm .
7. Prove and disprove the following statement : "A V-belt drive with same co-efficient of friction and angle of wrap as frat-belt drive will transmit less power than flat-belt drive".
8. Two pulleys, one 450 mm dameter and the other 200 mm diameter are on parallel shaft 2.1 m apart and are, connected by a crossed belt. The larger pulley rotates at 225 rpm. The maximampermissible tension in the belt is 1 KN and the coefficient of friction between the belt and the pulley is 0.25 . Find the length of the belt required and the power that can be transmitted.
9. Derixe an equation to determine the length of a crossed belt. (approximate). Two pgralle shafts 6000 mm apart are to be connected by a belt running over pulleys of diameter 600 mm and 400 mm respectively. Determine the approximate length if the

belt is crossed.

10. Determine the external and internal radius of the friction plate of a single clutch if maximum torque transmitted is $90 \mathrm{~N}-\mathrm{m}$. The external radius of the friction plate is 1.5 times the internal radius and the maximum intensity of pressure at any point of contact surface should not exceed $0.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Take both sides of the plate as effective and co0efficient of friction $=0.3$. Assume uniform wear. Also calculate the axial force exerted by the springs.
11. Deduce an expression for determination frictional torque in a conical pivot bearing considering uniform wear.
12. A conical pivot bearing supports a vertical shaft of 200 mm diameter. It is subjected to a load of 30 KN . The angle of cone is 120° and the co-efficient of friction is 0.025 . Find the power lost in friction when the speed is 140 rpm assuming i) Uniform pressure and ii) Uniform wear.
13. Derive an first principles and expression for the effort required to raise a load with a screw jack taking friction into consideration.
14. A 150 mm diameter valve, against a steam pressure of $2 \mathrm{MN} / \mathrm{m}^{2}$ is acting, is closed by ${ }^{\circ}$ means of a square threaded screw 50 mm in external diameter with 6 mm pitch. If the coefficient of friction is 0.12 , find the torque required to turn the handle.
15. The mean diameter of the screw jack having pitch of 10 mm is 50 mm . A load of 20 KN is lifted through a distance of 170 mm . Find the work done in lifting the load and efficiency of the screw jack when i) the load rotates with the screw ardii) the load rests on the loose head which does not rotate with the screw. The Oxternal and internal diameter of the bearing surface of the loose head are 60 mm and 100 respectively. The coefficient of friction for the screw as welfyty bearing surface may be taken as 0.08 .
16. A single dry plate clutch transmits 7.5 KW at 900 retolutions per minutes. The axial pressure is limited to $0.07 \mathrm{~N} / \mathrm{mm} 2$. If the coeffie ient of friction is 0.25 , find i) mean radius and face width of the friction lining assuming the ratio of the mean radius to the face width as 4 and 2, ii) outer and inne raddius of the clutch plate.
17. A screw jack has a square thread of mean diameter 6 cm and pitch 0.8 cm . The coefficient of friction at the screw thead is 0.09 . A load of 3 KN is to be lifted through 12 cm . Determine the forque required and the work done in lifting the load through 12 cm . Find the efficiency of the jack also.
18. A load of 25 KN is supported by a conical pivot with angle of cone as 1200 . The intensity of pressure is not to exceed $350 \mathrm{KN} / \mathrm{m} 2$. The external radius is 2 times the internal radius. The shaft is rotating at 180 revolution per minute and coefficient of friction is 0.05 . Find the power absorbed in friction assuming uniform pressure.
19. An open bel running over two pulleys 1.5 m and 1.0 m diameters connected two parallel shafts 4.8 m apart. The initial tension in the belt when stationary is 3000 N . If the smalle putley is rotating at 600 revolution per minute and coefficient of friction between the belt and the pulley is 0.3 , determine the power transmitted taking centrifugal tension into account. The mass of the belt is given as $0.673 \mathrm{Kg} /$ length.
20 The thrust of a propeller shaft is marine engine is taken up by a number of collars integral with the shaft which 300 mmin diameter, the thrust on the shaft is 200 KN and

- the speed is 75 rpm . Taking coefficient of friction is 0.05 and assuming intensity of pressure as uniform and equal to $0.3 \mathrm{~N} / \mathrm{mm} 2$, find the external diameter of the collars and the number of collars required, if the power lost in friction is not to exceed 16 KW.

21. A leather belt is required to transmit 7.5 KW from a pulley 1.2 m in diameter, running at 250 rpm . The angle embraced is 165° and the coefficient of friction between the belt and the pulley is 0.3 . If safe working stress for the leather belt is 1.5 MPa , density of leather is $1 \mathrm{Mf} / \mathrm{m}^{3}$ and thickness of belt is 10 mm . Determine the width of the belt taking centrifugal tension into account.
22. A square threaded bolt of root diameter 22.5 mm and pitch 5 mm is tightened by screwing a nut whose mean diameter of bearing surface is 50 mm . If the coefficient of friction between the nut and bolt is 0.1 . and the nut and bearing surface is 0.16 , determine the force required at the end of the spanner 500 mm long when the load on the bolt is 10 KN .
23. A leather faced conical clutch has a cone angle of 300 . If the intensity of pressure between the contact surfaces is limited to $0.35 \mathrm{~N} / \mathrm{mm} 2$ and breadth of the conical surface is not to exceed $1 / 3 \mathrm{rd}$ of the mean radius. Determine the dimensions of the contact surfaces to transmit 22.5 KW at 2000 rpm . Assume uniform wear rate and coefficient of friction is 0.15 .
24. Derive the expression for frictional torque on cone clutch based on unifompressure theory.
25. A single plate friction clutch with both sides of plate being effectio is used to transmit power at an engine speed of 2000 rpm . It has outer and inmer radius 10 cm and 8 cm respectively. Find the maximum power transmittedand the corresponding axial thrust. If the maximum intensity of pressure is not to exceed $0.08 \mathrm{~N} / \mathrm{mm}^{2}$. Assume coefficient of friction as 0.25 .
26. Flat belt runs on a pulley 1 m in diameter and transinits 8 KW at 200 rpm . Assuming angle of lap as 1700 and coefficient of friction as 0.25. Find the necessary width of belt if the pull is not to exceed $200 \mathrm{~N} / \mathrm{c}$, width of the belt. Neglect centrifugal tension.
27. Find the force required to be applied at the end of 500 mm long of a screw jack. The threads are single start square with 12 mm pitch and 65 mm mean diameter. The load does not rotate with screw spindle. The coefficient of friction for threads is 0.15 and for collar it is 0.12 which is having 40 mm mean radius. Also find the efficiency of the screw jack if the load to be lifted is 8 KN .
28. A multiple plate disc CTutch transmits 75 KW of power at 2000 rpm , coefficient of friction for the fridtion surfaces is 0.2 . Axial intensity of pressure is not to exceed 180 $\mathrm{KN} / \mathrm{m} 2$. Internal radius is 100 mm and is 0.8 times the external radius. Find the number of platos needed to transmit the required torque. Assume uniform wear conditions
29. A single plate clutch transmits 25 KW at 900 rpm . The maximum pressure intensity between the plates is $85 \mathrm{KN} / \mathrm{m}^{2}$. The outer diameter of the plate is 360 mm . Both the Sides of the plate are effective and the coefficient of friction is 0.25 . Determine i) the inner diameter of the plate ii) the axial force to engage the clutch.
3^{30}. A belt drive is required to transmit 10 KW from a motor running at 600 rpm . The belt is 12 mm thick and has a mass density of $0.001 \mathrm{~g} / \mathrm{mm}^{3}$. Safe stress in the belt is not exceeding $2.5 \mathrm{~N} / \mathrm{mm}^{2}$. Diameter of the driving pulley is 25 omm , whereas the speed of the driven pulley is 22 orpm . The two shafts are 1.25 m apart. The coefficient of friction is 0.25 . Determine the width of the belt.
30. A single plate clutch is required to transmit 8 KW at 1000 rpm . The axis pressure is limited to $70 \mathrm{KN} / \mathrm{m}^{2}$. The mean radius of the plate is 4.5 times the radial width of the friction surface. If both the sides of the plate are effective and the coefficient of
friction is 0.25 . find a) the inner and the outer radius of the plate and the mean radius, b) the width of the friction lining.
31. Find the width of the belt necessary to transmit 75 KW to a pulley 300 mm diameter, if the pulley makes 1600 rpm and the coefficient of friction between the belt and the pulley is 0.22 . Assume the angle of contact as 210° and the maximum tension in the belt is not to exceed $8 \mathrm{~N} / \mathrm{mm}$ widths.
32. The mean diameter of a square threaded screw jack is 55 mm . The pitch of a thread is ${ }^{\bullet}$ 10 mm the coefficient of friction is 0.15 . What force must be applied at the end of 0.7 m long, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 KN , and to lower it?
33. Single plate clutch, effective on both sides is required to transmit 25 KW ar 3000 rpm . Determine the outer and inner radius of frictional surface if the coefficiedtof friction is 0.2555 . The ratio of radius is 1.25 and the maximum pressure is notoo exceed of $0.1 \mathrm{~N} / \mathrm{mm} 2$. Also determine the axial thrust to be provided by springs. Assume uniform wear.
34. An open belt drive connects two pulleys 1.2 m and 0.5 m diameter, on parallel shafts 4 m apart. The mass of the belt is $0.9 \mathrm{Kg} / \mathrm{m}$ length ank the maximum tension is not to exceed 2000 N . The coefficient of friction is 0.3 . The 1.2 m pulley which is the driver runs at 200 rpm . Due to belt slip on one of the pulleys, the velocity of the driver shaft is only 450 rpm . Calculate the torque on eadbo the two shafts, the power transmitted and the power lost in friction. What is the efficiency of the drive?
35. The mean diameter of the screw jaek having pitch of 10 mm is 50 mm . A load of 20 KN is lifted through a distance $9 \mathcal{P} 170 \mathrm{~mm}$. Find the work done in lifting the load and efficiency of the screw jack ine i) the load rotates with screw. ii) the load rests on the loose head which does net rotate with the screw. Iii) the external and internal diameters of the bearing sarface of the loose head are 60 mm , and 10 mm respectively. The coefficient of friction for the screw as well the bearing surface may be taken as 0.08 .
36. Determine the equation to determine the torque required to lift the load by screw jack. Ii) a square threaded bolt of root diameter 22.5 mm and pitch 5 mm is tightened by screwigg qut whose mean diameter of bearing surface is 50 mm . If coefficient of frietion fer nut and bolt is 0.1 and for nut and bearing surface 0.16 , find the force requited at the end of a spanner 500 mm long when the load on the bolt is 10 KN . Derive an expression for the torque required to lift a load by a screw jack, if 1 is the Hength of the arm.
39 . A leather faced conical clutch has a cone angle of 300 . If the intensity of pressure between the contact surfaces is limited to 0.35 MPa and the breadth of the conical surface is not to exceed one-third of the mean radius, find the dimensions of the contact surfaces to transmit 22.5 v KW at 2000 rpm . Assume uniform rate of wear and take coefficient of friction as 0.15 .
37. A compressor required 90 KW to operate at 250 rpm . The drive is by V-belts from an electric motor running at 750 rpm . The diameter of the pulley on the compressor shaft must not be greater than 1 meter while the centre distance between the pulleys is limited to 1.75 m . The belt speed should not exceed $1600 \mathrm{~m} / \mathrm{min}$. Determine the
number of V belts required to transmit the power if each belt has a cross sectional are of $375 \mathrm{~mm}^{2}$; density $1000 \mathrm{Kg} / \mathrm{m}^{3}$ and an allowable tensile stress of 2.5 MPa . The groove angle of the pulley is 350 . The coefficient of friction between the belt and the pulley is 0.25 . Also calculate the length required for each belt.
38. Derive an expression for braking torque on the drum of simple band brake.
39. The mean diameter of the screw jack having pitch of 10 mm is 50 mm . A load of 20 KN is lifted through a distance of 170 mm . Find the work done in lifting the load and efficiency of the screw jack when i) the load rotates with the screw and ii) the road rests on the loose head which does not rotate with the screw. Iii) the external and internal diameters of the bearing surface of the loose head are 60 mm , and 10 mm respectively. The coefficient of friction for the screw as well the bearing surfaee may be taken as 0.08 .
40. Deduce the expression for the friction moment of a collar thrust Deating, stating clearly the assumption made.
41. A shaft has a number of collars integral with it. The external dianeter of the collars is 400 mm and the shaft diameter is 250 mm . If the uniform intensity of pressure is $0.35 \mathrm{~N} / \mathrm{mm} 2$ and its coefficient of friction is 0.05 , estimate i) power absorbed in overcoming friction when the shaft runs at 105 nmand carries a load of 150 KN and ii) number of collars required.
42. The brake whose dimensions are shown in igatre has coefficient of friction of 0.3 and is to have a maximum pressure of 1000 KPa ainst the friction material. 1) Using an actuating force of 1750 N , determire the face width of the shoes (both shoes have same width) and 2) what torque will the brake absorb?

