

Invigilator's Signature : \qquad

CS/ B.TECH/ BT (O)/ SEM-3/ BT-304/ 2012-13

 2012INDUSTRIAL STOICHIOMETRY
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Log-Log graph sheet will be supplied by the Institute on demand.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
$10 \times 1=10$
i) Dimension of viscosity is
a) $M L^{-1} \theta^{-1}$
b) $M L^{2} \theta^{-1}$
c) $\quad M \theta L^{-1}$
d) $M L^{2} \theta$.
ii) Standard atmospheric pressure is equal to
a) 10 psia
b) 14.7 psia
c) 33.91 ft mercury
d) both (b) and (c).
iii) During temperature change of gas at constant pressure
a) Heat added $=$ Change of internal energy
b) Head added = Change of enthalpy
c) Heat added = Change of temperature
d) none of these.
iv) Prandtl number is
b)
d) $\mu / K C_{p}$.
v) Which of the following expressions is true for ideal gases?
a) $C_{m p}+C_{m v}=R$
b) $\quad C_{m p} \cdot C_{m v}=R$
c) $C_{m p}-C_{m v}=R$
d) $\quad C_{m p} / C_{m v}=R$.
vi) Reynolds number signifies
a) inertia force / viscous force
b) gravitational force / viscous force
c) buoyancy force / viscous force
d) momentum diffusivity / thermal diffusivity.
vii) Which type of liquid mixture follows additive rule for heat capacity?

$$
\left(C_{l m i x}=\sum x_{i} \cdot C_{l i}\right)
$$

a) Miscible
b) Immiscible
c) Both (a) \& (b)
d) None of these.
viii) 1 watt is equal to
a) 4.314 B.T.U./hr
b) 3.41 B.T.U. $/ \mathrm{hr}$
c) 5.61 B.T.U./hr
d) 6.37 B.T.U./hr.
ix) The heat of reaction is
a) independent of temperature and pressure
b) independent of temperature but changes with pressure
c) independent of the number of intermediate steps involved
d) independent of the state of aggregation of the reactants and products.

a) carbon, hydrogen, ash
b) volatile matter, moisture, ash \& fixed carbon
c) carbon, hydrogen, sulphur, nitrogen
d) volatile matter, moisture, nitrogen, carbon.
xi) The wet bulb temperature of an unsaturated gas-vapour system
a) is the same as its dew point
b) is always greater than the dew point
c) is always less than the dew point
d) none of these.
xii) How many moles are there in 500 gm of oxygen?
a) 31.25
b) $15 \cdot 625$
c) 9.41×10^{24}
d) 22.4×10^{3}.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $\quad 3 \times 5=15$
2. A sample contains 25% alcohol (ethyl alcohol) in volume basis. Find the wt\% of alcohol in the sample. Assume density of alcohol \& alcohol free liquid to be $0.79 \mathrm{gm} / \mathrm{cc} \&$ $1 \mathrm{gm} / \mathrm{cc}$.

a) the per cent relative humidity,
b) the partial pressure of the water vapour in air.

Vapour pressure of water at $96^{\circ} \mathrm{F}$ is $0.8403 \mathrm{lb} / \mathrm{in}^{2}=$
43.44 mm Hg .
4. If 5 kg of methanol \& 2 kg of ammonia are reacted to form mono-ethanolamine by the reaction

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

a) what is the limiting reactant ?
b) what is the $\%$ excess reactant?
c) recalculate (a) and (b) when diethanolamine is formed by the reaction

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{NH}_{3} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{H}_{2} \mathrm{O} .
$$

5. What do you mean by bubble point and dew point ? Describe briefly with graphical representation.
6. By electrolyzing a mixture of brine, a mixture of gases is obtained in cathode having the following percentage by weight $\mathrm{Cl}_{2}-67 \%, \mathrm{Br}_{2}-28 \%, \mathrm{O}_{2}-5 \%$. Using the ideal gas law calculate (i) composition of the gas by volume, (ii) density of the mixture in grams per litre at $25^{\circ} \mathrm{C}$ and 740 mm of mercury pressure.

7. a) $\mathrm{N}_{2}-\mathrm{H}_{2}$ mixture with a molar ratio of $1: 3$ is used for the manufacture of NH_{3}, where 18% conversion is achieved. After separating NH_{3} from the product, the unconverted gases are recycled. The feed contains $0 \cdot 2$ mole of argon per 100 moles of $\mathrm{N}_{2}-\mathrm{H}_{2}$ mixture.
The tolerance limit of argon entering the reactor is 6 parts to 100 parts of $\mathrm{N}_{2}-\mathrm{H}_{2}$ mixture by volume. Calculate
i) the fraction of recycle that must be continuously purged
ii) the overall yield of ammonia.
b) Define the following terms :
i) Limiting reactant
ii) \% Excess
iii) Selectivity
iv) Purging.
c) Air is pumped through an orifice immersed in liquid. The size of the bubbles leaving the orifice depends on the diameter of the orifice and the properties of the liquid. The equation representing the situation is

$$
\frac{g\left(\rho_{L}-\rho_{g}\right) D_{b}^{3}}{\sigma D_{o}}=6
$$

where $g=$ Gravitational acceleration $=32 \cdot 174 \mathrm{ft} / \mathrm{s}^{2}$,
$\rho_{L}=$ liquid density $=1 \mathrm{~g} / \mathrm{c} . \mathrm{c}$.
$\rho_{g}=$ gas density $=0.081 \mathrm{lb} / \mathrm{ft}^{3}$,
$D_{b}=$ bubble diameter,
$\sigma=$ gas-liquid surface tension $=70.8$ dyne $/ \mathrm{cm}$,
$D_{o}=$ orifice diameter $=1 \mathrm{~mm}$.
Calculate the bubble diameter D_{b}.
$6+6+3$
8. a) The following data have been gathered from an experiment meant to determine the relationship which exists between the diameter of a ring and its period of oscillation as a pendulum. Each diameter was measured, and each period was determined by measuring the number of cycles per unit of time.

Ring diameter (cm)	3.51	7.26	13.7	28.5	38.7
Time period (Sec $)$	0.374	0.532	0.768	1.08	1.32

These data follow a relationship of the form $T=A d^{n}$ where T is the period of oscillation, A is the constant of proportionality, d is the diameter of the ring, and n is a constant. Find out the values of A and n using log-log graph paper.
b) Production of single cell protein from hexadecane is described by the following reaction equation :
$\mathrm{C}_{16} \mathrm{H}_{34}+\mathrm{aO}_{2}+\mathrm{bNH}_{3} \rightarrow \mathrm{cCH}_{1.66} \mathrm{O}_{0.27} \mathrm{~N}_{0.20}+\mathrm{dCO}_{2}+\mathrm{e} \mathrm{H}_{2} \mathrm{O}$ where $\mathrm{CH}_{1.66} \mathrm{O}_{0.27} \mathrm{~N}_{0.20}$ represent the biomass. If $R Q=0 \cdot 43$, determine
i) the stoichiometric coefficients
ii) the yield coefficients $Y_{x / \mathrm{S}}$ and $Y_{x / \mathrm{O}_{2}}$
iii) the degree of reduction for the substrate and bacteria.
$9+6$

Calculate the heat required to raise the temperature of 6.4 kg SO 2 from $27^{\circ} \mathrm{C}$ to $727^{\circ} \mathrm{C}$.
b) Chlorinated diphenyl (a liquid) is heated from 313 K to 553 K . Heat capacity of this liquid is governed by :
$C_{1}=0.75+1.4 \times 10^{-3} . T \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$
i) Calculate heat required to raise the temperature of 1 kg chlorinated diphenyl.
ii) Heat capacity of Chlorinated diphenyl at 313 K and 553 K is $1.18 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$ and $1.52 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$ respectively. Calculate the percentage error involved in using heat capacity data for heat change calculation. $7+8$
10. a) 1000 kg of an impure limestone which analyses $96 \% \mathrm{CaCO}_{3}$ and 4% inert material is reacted with a sulphuric acid solution containing 70% sulphuric acid and 30% water. The reacting mass is heated and all the CO_{2} generated is driven off together with some of the water. The analyses if the final solid 'cake' is

$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{O}$
Inerts
86.54\%

3•11\%
1•35\%
6.23\%
$2 \cdot 77 \%$

Calculate (i) the degree of completion of the reaction, (ii) mass of acid solution fed.

ii) Biomass yield.
c) Check the dimensional homogeneity of the following equation :
$B=C_{d} A(2 \mathrm{gH})^{1 / 2}$ where, $B=$ volumetric flow rate, $C_{d}=$ drag coefficient (dimensionless), $g=$ gravitational acceleration, $H=$ difference in height, $A=$ area.

$$
7+5+3
$$

11. Derive the equation by Buckingham P_{i} method for the case of the force exerted on a body immersed in a fluid, where F (force), is the function of L (length), V (velocity) of the body passing through the fluid, P is density of fluid medium, μ is viscosity of the medium.
