Name :	
Roll No. :	An Phanese (V Knowledge and Knowledge

Invigilator's Signature :

CS/B.Tech(BT)/SEM-3/BT-304/2010-11 2010-11

INDUSTRIAL STOICHIOMETRY

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words

as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - i) Degree of reduction of ethanol is

a)	6		b)	12

- c) 11 d) 2.
- ii) Specific heat capacity of water is
 - a) $4 \cdot 184 \text{ kJ/g}^{\circ}\text{C}$ b) $1 \text{ cal/kg}^{\circ}\text{C}$
 - c) $4 \cdot 184 \text{ kJ/kg}^{\circ}$ C d) 1 kcal/g° C
- iii) An ideal liquid solution follows
 - a) Charles law
 - b) equation of state
 - c) Raoults law and Henry's law
 - d) none of these.

3054

[Turn over

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. A natural gas has following composition by volume : CO $_2$ - 0.8%, N $_2$ - 3.2% and CH $_4$ - 96%.

Calculate : (a) the composition in weight percentage (b) the average molecular weight.

3. Mass flow through a nozzle as a function of gas pressure and temperature is given by $m = 0.0549 (P/T^{0.5})$, where m is in lb/min, P is in psi and T is in °R. Obtain an expression of mass flow rate in kg/sec with P in atmospheres and T in Kelvin. Given $T^{\circ}R = T^{\circ}F + 460$;

14.7 psi = 1 atm.

3054

[Turn over

- 4. An heat exchanger for cooling a hot hydrocarbon liquid uses 10,000 kg/hr of cooling water, which enters the exchanger at 294 K. The hot oil at the rate of 5000 kg/hr enters at 423 K and leaves at 338 K and has an average heat capacity of 2.51 kJ/KgK. Calculate the outlet temperature of water.
- 5. Define or state the following :
 - a) Heat capacity
 - b) First law of thermodynamics
 - c) Heat of formation
 - d) Degree of reduction
 - e) Ideal solution.
- 6. A continuous distillation column is used to regenerate solvent for use in a solvent extraction unit. The column treats 200 kmol/hr of a feed containing 10% (mol) ethyl alcohol and the rest is water. The overhead product is 89% (mol) alcohol and the bottom product is 0.3% (mol) alcohol. The overhead is sent to the extraction unit and the bottom is wasted. What is the daily requirement of make-up alcohol in the solvent extraction unit ?

- 7. Consider the convective mass transfer of a fluid flowing in by forced convection through a pipe. The fluid is flowing at a velocity v, through a pipe of diameter D and has the density ρ , viscosity μ and the diffusivity D_{AB} . Relate the mass transfer coefficient K_c to the variables D, ρ , μ , v and D_{AB} using the Buckingham pi theorem.
- 8. Pure CO_2 may be prepared by treating limestone with aqueous $H_2 SO_4$. The limestone contains $CaCO_3$ and MgCO₃ and the remaining is insoluble matter. The acid is 12% $H_2 SO_4$. The residue from the process has the following composition :

CaSO 4	8.56%
MgSO 4	5.23%
H $_2$ SO $_4$	1.05%
Inert	0.53%
CO 2	0.12%
Water	84.51%

Calculate :

a) Composition of limestone used

b) % excess acid used.

 $CaCO_3 + H_2 SO_4 = CaSO_4 + CO_2 + H_2 O_3$

 $MgCO_3 + H_2 SO_4 = MgSO_4 + CO_2 + H_2 O.$

3054

[Turn over

- 9. Wet solid is fed to a drier to reduce the moisture content from 80% to 15%. The product leaving the drier again passed through an oven and further moisture is reduced to 2%. If the drier can handle 1000 kg of wet solid per day, Calculate :
 - a) The weight of products leaving the drier and oven per day,
 - b) The percentage of the original water that is removed in the drier and oven. 8 + 7
- 10. Flue gases leaving the stack of a boiler at 533 K have the following molar composition :

CO $_2$ = 11·31%, H $_2$ O = 13·04%, O $_2$ = 2·17% and

N $_2\,$ = 73·48%. Calculate the heat loss in kmol of gas mixture above 298 K. Also calculate the average heat capacity of dry flue gas.

C _p in kJ/kmolK is given in the following table, C _p = $a + bT + CT^2$

	а	$b \propto 10^{3}$	$C \propto 10^{6}$
CO 2	21.3655	64.284	- 41.0506
Н ₂ О	18.56	33.23	- 52.16
0 ₂	26.0257	11.7551	- 2·3426
N ₂	19·2494	52·1135	11.973

CS/B.Tech(BT)/SEM-3/BT-30472010-11 11. a) Carbon monoxide and water vapour react in stoichiometric amounts to form carbon dioxide and hydrogen. The feed enters at 25°C and the product leaves at 540°C with a carbon monoxide conversion of 75%. Determine the total amount of heat which must be added or removed in the reactor per 100 kg of hydrogen product. The following data may be used :

Component	Heat of formation at 25°C, kJ/kmol	Heat capacity 25°C, kJ/(kmol K)
со	- 110600	30.35
Н ₂ О	- 241980	36.00
CO ₂	- 393770	45.64
H ₂	0	29.30
		12

b) Define adiabatic flame temperature.

7 [Turn over

3