

Invigilator's Signature : \qquad

CS/B.Tech(BT)/SEM-3/BT-304/2010-11

 2010-11

 2010-11
 INDUSTRIAL STOICHIOMETRY

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) Degree of reduction of ethanol is
a) 6
b) 12
c) 11
d) 2 .
ii) Specific heat capacity of water is
a) $4 \cdot 184 \mathrm{~kJ} / \mathrm{g}^{\circ} \mathrm{C}$
b) $1 \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}$
c) $4 \cdot 184 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$
d) $1 \mathrm{kcal} / \mathrm{g}^{\circ} \mathrm{C}$.
iii) An ideal liquid solution follows
a) Charles law
b) equation of state
c) Raoults law and Henry's law
d) none of these.

a) bubble point
b) dew point
c) boiling point
d) melting point.
v) Heat of formation of carbon is
a) $0 \mathrm{~kJ} / \mathrm{mol}$
b) $\quad-393 \mathrm{~kJ} / \mathrm{mol}$
c) $\quad-241.82 \mathrm{~kJ} / \mathrm{mol}$
d) none of these.
vi) Volume per cent of a gas in a mixture is equal to
a) pressure per cent
b) mole per cent
c) weight per cent
d) mole per cent only for ideal gas.
vii) Standard atmospheric pressure is equal to
a) 10 psia
b) $1.033 \mathrm{~kg} / \mathrm{cm}^{2}$
c) 760 mm Hg
d) both (b) and (c).
viii) Dimension of viscosity is
a) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
b) $\quad \mathrm{ML}^{2} \mathrm{~T}^{-1}$
c) MLT^{-1}
d) $\quad \mathrm{ML}^{2} \mathrm{~T}$.
a) $\mu \mathrm{Cp} / \mathrm{K}$
c) hD / K
x) In a biochemical process, the recycle stream is purged for
a) increasing the yield
b) enriching the product
c) limiting the inerts
d) heat conservation.

GROUP - B

(Short Answer Type Guestions)
Answer any three of the following. $3 \times 5=15$
2. A natural gas has following composition by volume :
$\mathrm{CO}_{2}-0 \cdot 8 \%, \mathrm{~N}_{2}-3 \cdot 2 \%$ and $\mathrm{CH}_{4}-96 \%$.

Calculate : (a) the composition in weight percentage (b) the average molecular weight.
3. Mass flow through a nozzle as a function of gas pressure and temperature is given by $m=0.0549\left(\mathrm{P} / \mathrm{T}^{0.5}\right)$, where m is in $\mathrm{lb} / \mathrm{min}, P$ is in psi and T is in ${ }^{\circ} \mathrm{R}$. Obtain an expression of mass flow rate in $\mathrm{kg} / \mathrm{sec}$ with P in atmospheres and T in Kelvin. Given $T^{\circ} \mathrm{R}=T^{\circ} \mathrm{F}+460$;
$14 \cdot 7 \mathrm{psi}=1 \mathrm{~atm}$.
4. An heat exchanger for cooling a hot hydrocarbon liquid uses $10,000 \mathrm{~kg} / \mathrm{hr}$ of cooling water, which enters the exchanger at 294 K . The hot oil at the rate of $5000 \mathrm{~kg} / \mathrm{hr}$ enters at 423 K and leaves at 338 K and has an average heat capacity of $2.51 \mathrm{~kJ} / \mathrm{KgK}$. Calculate the outlet temperature of water.
5. Define or state the following :
a) Heat capacity
b) First law of thermodynamics
c) Heat of formation
d) Degree of reduction
e) Ideal solution.
6. A continuous distillation column is used to regenerate solvent for use in a solvent extraction unit. The column treats $200 \mathrm{kmol} / \mathrm{hr}$ of a feed containing 10% (mol) ethyl alcohol and the rest is water. The overhead product is 89% (mol) alcohol and the bottom product is 0.3% (mol) alcohol. The overhead is sent to the extraction unit and the bottom is wasted. What is the daily requirement of make-up alcohol in the solvent extraction unit ?
7. Consider the convective mass transfer of a fluid flowing in by forced convection through a pipe. The fluid is flowing at a velocity v, through a pipe of diameter D and has the density ρ, viscosity μ and the diffusivity $D_{A B}$. Relate the mass transfer coefficient K_{c} to the variables D, ρ, μ, v and $D_{A B}$ using the Buckingham pi theorem.
8. Pure CO_{2} may be prepared by treating limestone with aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$. The limestone contains CaCO_{3} and MgCO_{3} and the remaining is insoluble matter. The acid is $12 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The residue from the process has the following composition :

CaSO_{4}	8.56%
MgSO_{4}	5.23%
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.05%
Inert	0.53%
CO_{2}	0.12%
Water	84.51%

Calculate :
a) Composition of limestone used
b) $\%$ excess acid used.
$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{CaSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{MgSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$.
9. Wet solid is fed to a drier to reduce the moisture content from 80% to 15%. The product leaving the drier again passed through an oven and further moisture is reduced to 2%. If the drier can handle 1000 kg of wet solid per day, Calculate :
a) The weight of products leaving the drier and oven per day,
b) The percentage of the original water that is removed in the drier and oven.
10. Flue gases leaving the stack of a boiler at 533 K have the following molar composition :
$\mathrm{CO}_{2}=11 \cdot 31 \%, \mathrm{H}_{2} \mathrm{O}=13 \cdot 04 \%, \mathrm{O}_{2}=2 \cdot 17 \%$ and $N_{2}=73 \cdot 48 \%$. Calculate the heat loss in kmol of gas mixture above 298 K . Also calculate the average heat capacity of dry flue gas.
C_{p} in $\mathrm{kJ} / \mathrm{kmolK}$ is given in the following table,
$\mathrm{C}_{\mathrm{p}}=a+b T+C T^{2}$

	a	$b \infty 10^{3}$	$C \infty 10^{6}$
CO_{2}	$21 \cdot 3655$	$64 \cdot 284$	$-41 \cdot 0506$
$\mathrm{H}_{2} \mathrm{O}$	$18 \cdot 56$	$33 \cdot 23$	$-52 \cdot 16$
O_{2}	$26 \cdot 0257$	11.7551	$-2 \cdot 3426$
$\mathrm{~N}_{2}$	$19 \cdot 2494$	$52 \cdot 1135$	11.973

CS/B.Tech(BT)/SEM-3/ВT-304/2010-11 Unesh
11. a) Carbon monoxide and water vapotir react in stoichiometric amounts to form carbon dioxide and hydrogen. The feed enters at $25^{\circ} \mathrm{C}$ and the product leaves at $540^{\circ} \mathrm{C}$ with a carbon monoxide conversion of 75%. Determine the total amount of heat which must be added or removed in the reactor per 100 kg of hydrogen product. The following data may be used :

Component	Heat of formation at $\mathbf{2 5} \mathbf{C}, \mathbf{k J} / \mathbf{k m o l}$	Heat capacity $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{k J} /(\mathbf{k m o l ~ K)}$
CO	-110600	$30 \cdot 35$
$\mathrm{H}_{2} \mathrm{O}$	-241980	$36 \cdot 00$
CO_{2}	-393770	$45 \cdot 64$
H_{2}	0	$29 \cdot 30$

b) Define adiabatic flame temperature.

