

Invigilator's Signature :

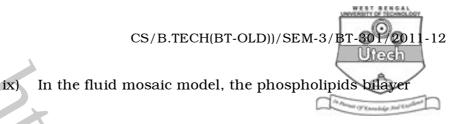
CS/B.TECH(BT-OLD))/SEM-3/BT-301/2011-12 2011 CELL BIOLOGY AND BIOCHEMISTRY

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A


(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - The net gain of ATP molecules resulting from Glycolysis is
 - a) 2 b) 4 c) 36 d) 38.
 - ii) Any phosphorylation reaction catalyzed by Kinase require
 - a) Mn^{+2}/Mg^{+2} b) Inorganic phosphate
 - c) Epinephrine d) all of these.

3006-(O)

[Turn over

CS/B.TEC	The	-OLD))/SEM-3/BT-301/2 hexose monophosph ortance in cellular meta	late	shunt has greater		
	a)	NADH	b)	ATP		
	c)	Acetyl CoA	d)	NADPH.		
iv)	The	chemical substance th	at en	iters the Krebs cycle for		
	further metabolism is					
	a)	Ethyl alcohol	b)	Pyruvic acid		
	c)	Acetyl CoA	d)	Lactic acid.		
v)	Ami	Amino acid not involved in urea cycle is				
	a)	Arginine	b)	Histidine		
	c)	Citruline	d)	Aspartic acid.		
vii)	A ke	ey substance in pyrimidine biosynthesis is				
	a)	Carbamoyl phosphate	b)	АТР		
	c)	Thiouracil •	d)	Ribose 5 phosphate.		
vii)	The	The most abundant lipid in a cell membrane is				
	a)	Phospholipids	b)	Steroid		
	c)	Cholesterol	d)	Cutin.		
viii)	A m	membrane is held together primarily by				
	a)	Hydrophobic attraction	ıs			
	b)	Hydrophilic attractions	5			
	c)	covalent bonds				
	d)	Ionic bonds.				
3006-(O)		2				

a) is sandwiched between two protein layers

b) has protein embedded in it

- c) lies on top of a single protein layer
- d) is covered by a single protein layer.

 x) When phospholipids molecules are placed in water, they may cluster into a spherical structure called a

- a) micelle b) coated pit
- c) vacuoles d) centriole.
- xi) All membrane processes, such as pumping and channeling of molecules are carried out by
 - a) lipids b) carbohydrates
 - c) proteins d) nucleic acids.

3006-(O)

[Turn over

CS/B.TECH(BT-OLD))/SEM-3/BT-301/2011-12

xii) The lipid bilayer is impermeable to

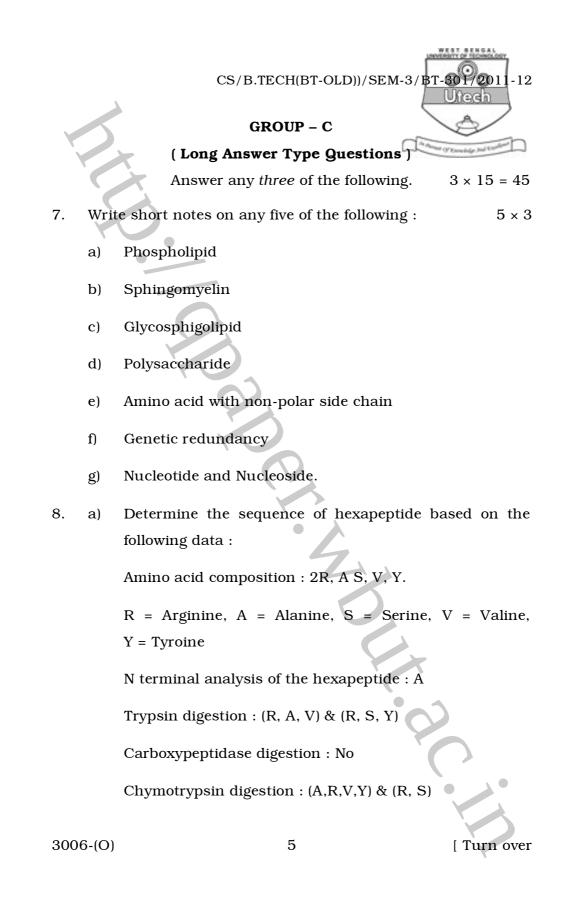
hydrocarbons

a)

b) hydrophobic molecules

c) small uncharged polar molecules

d) large uncharged polar molecules.


GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Discuss the steps in pentose phosphate pathway with overall reactions.
- 3. How glycogen metabolism is controlled by cAMP and insulin?
- 4. Write the steps of citric acid cycle. What is its importance ?
- 5. Calculate pI for Aspartic acid, where $pK_1 (\alpha COOH) = 2.09$, $pK_2 (\alpha NH_3^+) = 9.9$, $pK_3(R-gr.) = 3.9$.
- 6. a) If the melting temperature of one DNA sample is more than the other, what will be your conclusion ?
 - b) Name two purine and two pyrimidine bases. 3+2

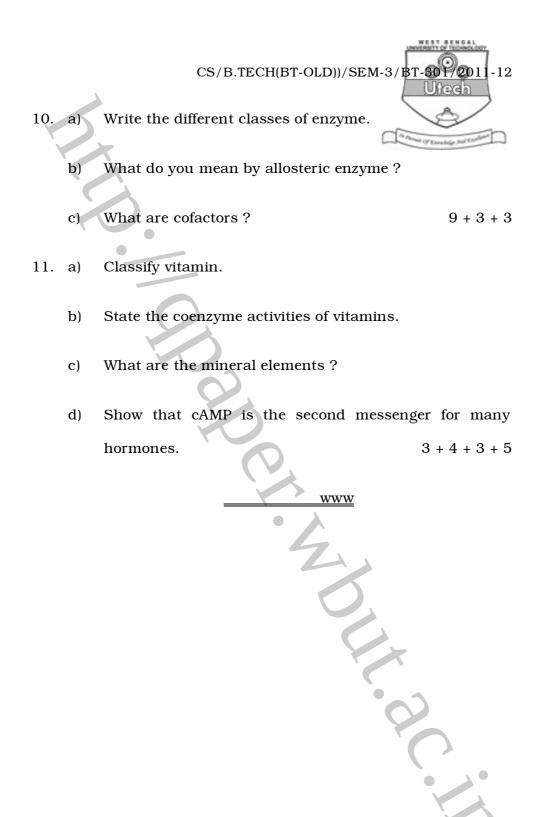
3006-(O)

CS/B.TECH(BT-OLD))/SEM-3/BT-301/2011-12

b) Compare "negative supercoiling" with "positive coiling" of DNA.

The three dimensional structure of biomolecules is more c) conserved evolutionarily than the sequence. Why?

6 + 6 + 3


- the principles 9. Discuss basic concept and of a) UV Spectroscopy.
 - A solution contains a mixture of Hemoglobin and Blue b) dextran. The mixture has an absorbance of 0.88 at 414.5 nm and 0.69 at 640 mm in an 1 cm cubette. The molar absorption co-efficient of Hemoglobin and Blue dextran are given below

	ε _M (414.5 nm)	ε _M (640 nm)		
Hemoglobin	125000	1000		
Blue dextran	3500	42000		

Calculate the molar concentration of Hemoglobin and Blue dextran. Justify whether the extinction co-efficient cannot be

	ε _M (414.5nm)	ε _M (640 nm)
Hemoglobin	0.01	0.85
Blue dextran	0.91	0.002

3006-(O)

[Turn over

3006-(O)