B. CONSTRUCTION ENGG. FinAl EXAMINATION, 2006
 (1 st Semester)
 HIGHRISE AND INDUSTRIAL STRUCTURES

Time : Three hours
Full Marks : 100
(50 marks for each part)
Use a separate answer-script for each part.

PART-I

Answer any two questions.
Figures in the margin indicate full marks.
Assume reasonable values of any data not provided.

1. The plan and elevation of a 8-storied R.C. framed residential building is shown in Fig.Q1. The spacing of the frames are at intervals of 3 m . Assuming the intensities of dead load and live load at an intermediate floor as $3.5 \mathrm{kN} / \mathrm{m}^{2}$ and $5.0 \mathrm{kN} / \mathrm{m}^{2}$ respectively, evaluate the design B-M.S. at midspan of AB and also at joints A and B of the frame as shown in the figure. The rotational stiffness of the members are as shown beside each member of the figure.
Also comment on the correctness of the approxi-
mate method of analysis adopted.

Figure Q1—see page 2.
(2)

Fig. Q1

(3)

2. (a) How do lateral forces come to act on High rise structure ? How do you analyse them in evaluating forces and moments in the frame members ? Discuss only the cantilever method of analysis and comment on its merits and demerits.
(b) If, for the frame shown in Fig. Q. 1, the seismic force at roof level is 300 kN , calculate the axial forces, shear and B.M. in frame members at the roof level only. $10+15$
3. (a) Distinguish between rectilinear and curvilinear structures. Deduce the expressions for meridional and hoop forces in a spherical dome of semi- angle θ and radius R .

PART-II

Answer any three questions.
Two marks reserved for neatness.
Any missing data may be assumed suitably.
4. A simply supported plate Girder having a span of 14 m has to support floor beams with other loading details as shown below:

(4)

$$
\begin{aligned}
& \begin{array}{l}
\text { Area }=21.02 \mathrm{B2}, \\
I x x=325824 \\
I y y=1627 \mathrm{Zst}
\end{array} \\
& \text { xxx = 3.88. \%y 2. } 396
\end{aligned}
$$

The top flange of the girder is restrained effecttively and the girder is providedwith $2 \angle 125 \times 95 \times 10$ flange angles welded as shown. Assume the depth of web plate to be 900 mm .

(5)

Check the following :
(a) Adequacy of flange area provided
(b) The requirement of web stiffeners
(c) The maximum value of deflection to satisfy the requirement of Span/500.

Assume $f_{y}-250 \mathrm{~N} / \mathrm{mm}^{2}$.
The permissible bending stresses $\sigma_{\mathrm{bc}} / \sigma_{\mathrm{bt}}=165 \mathrm{~N} / \mathrm{mm}^{2}$.
5. Answer any four of the following : 4×4
(a) Slag inclusion in welding.
(b) Design consideration for a cable or pipe trench with an example of pipe trench.
(c) Draw sketches (2 no.) connecting tubes with gusset plates.
(d) Dimensional criteria for machine foundation design.
(e) Methods of design for steel framework.
(f) Calculate the length of the curve of intersection when two tubes are connected using the following values :

6. Answer any two questions :
(a) Calculate the value of plastic moment M_{p} and draw the plastic binge diagram for the beam shown below :

(b) Joints in Industrial floors with sketches.
(c) Check the adequacy of a Column Continuous between first and second floor of a building frame having load arrangement as shown below. The effective length of the column may be assumed as 2.8 m .

Try with ISMB-350 properties:

$$
\begin{aligned}
& \text { Area ' } A^{\prime}=66 \cdot 71 \mathrm{~cm}^{2} \\
& \gamma_{x x}=14 \cdot 29 \mathrm{~cm} \\
& \gamma_{y y \cdot}=2.84 \\
& Z_{x x}=778 \cdot 9 \mathrm{~cm}^{3} \\
& Z_{y y}=76.8 \mathrm{~cm}^{3}
\end{aligned}
$$

Assume the following permissible stresses:

$$
\begin{aligned}
& \sigma_{\mathrm{ac}}=82 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{bcx}}=160 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{cy}}=126 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{C}_{\mathrm{m}}=0.85
\end{aligned}
$$

7. (a) Check the adequacy of the rafter member subjected to the loading of glazing purlins of a truss as shown below :

(8)
From the analysis, the rafter member is subjected to the following :
(i) Compressive member force $=88 \mathrm{kN}$
(ii) Maximum Bending Moment $=-1.75 \mathrm{kNm}$
(Hogging)
Try with $2 \angle, 75 \times 50 \times 8$ back to back and check the adequacy.

(b) Bracing arrangement against lateral loads for an industrial shed. Assume a reasonable size of the shed and draw sketches. 8
