Ex/CON/T/413/56/2011

BACHELOR OF CONSTRUCTION ENGG. EXAMINATION, 2011

(4th Year, 1st Semester)

DESIGN OF STRUCTURE – III

Time : Three hours

Full Marks :100

Use Separate Answer Script for each part.

PART – I

Answer *two* questions. Use of relevant IS Code, SP-16 are allowed. Assume suitable data not given.

- a) Derive the moment of resistance MR_c & MR_τ expression for rectangular RC section of beam for limit state of collapse in bending.
 - b) Check the safely of the uni-axially eccentric loaded column of size 400 x 500, made of M20 grade of concrete. The working load = 2000kN, Eccentricity = 0.1m. along the major axis. Check also the safety, if the eccentricity is along the minor axis keeping all other parameter uncharged.
- A eight storied RCC residential building to be constructed at Delhi at terrain category II. The plan & elevation are shown in figure -1. The thickness of outer & inner walls are 250 mm & 125 mm respectively. Assume live [Turn Over]

load = $3kN/m^2$, slab thickness = 125 mm, floor finish = 20mm, ceiling plaster = 8mm.

Based on the above information answer any one question of the following.

- a) i) Calculate the design forces due to seismic load at all floor level of the frame A-B-C-D/3 Evaluate the maximum bending moment and axial force in columns & bending moment in beams of the frame A-B-C-D/3 at 1st floor level, by Portal method.
- ii) Discuss Response Spectrum method indicating the significance of all the parameters.
 25

OR

 b) Calculate the design forces due to wind load at all floor level of the frame 1-5/B. Evaluate the bending moment, Shear force and axial forces in beams & colums of the frame 1-5/ B at 3rd floor level by Portal method.

Discuss the Portal method indicating assumption, advantage and limitation of the method. 25

(5)

Member	DL (KN/m)	LL (KN/m)	
AB	10	15	
BC	12	16	
CD	10	12	

 Design a simple shear wall of length 5m and thickness
 300 mm. Use M25 grade Concrete and Fe415 HYSD with the following loading.

-×

SL. NO	Loading	Axial force (kN)	Moment (kNm)	Shear (kN)
1	DL + LL	1950	600	20
2	SL	250	4800	700

(4)

PART – II

Answer any two questions.

The design wind speed of (G + 2) storied building is 120 kN, 90 kN and 80 kN acting at the nodal points, B.C.D of a frame as shown in figure below. Calculate the moment developed in each column and floor.

 Find the maximum regative moment at points A and B and maximum positive moment at span BC of a frame as shown in below and draw the BMD of the frame of that portion. Assume the suitable stiffness value.

(3)