9. A drum drier in being used to dry starch based breakfast food. The initial moisture content of the food is 75%(Wet basis). The drum surface temperature is 138°C and the food layer outer surface is 100°C. The estimated heat transfer coefficient from the drum surface the drying food is 800J/m²-s-°C. Assume that the thickness of the food on the drum is 0.3mm and the thermal conductivity of the food is 0.55J/m-s-°C. The drum has a length of 1m and diameter of 1m(outside) and is rotating at 2 revolution/minute. If the food occupies three-quarters of the circumference, estimate the moisture content of the film being scrapped off. Assume the critical moisture content of the food material is 14% on a dry basis and that conduction heat transfer is through the whole film thickness. Assume the density of food paste to be 1060 kg/m³. 20

____X___

BACHELOR OF TECHNOLOGY (FTBE) EXAMINATION, 2013

(3rd Year, 2nd Semester)

Food Process Engineering

Time: Three hours. Full Marks: 100

Use a separate Answer-Script for each part.

PART - I (50 marks)

Answer *q.no.* 1 and any *two* from the rest.

1.

Fill	in the blanks: 1x10=20
(a)	is the critical temperature zone in freezing of foods.
(b)	Insulated vans have thickness of PUF.
(c)	Thawing curves are than freezing curves.
(d)	'n' is known as in GL method of calculation of freezing time.
(e)	δ = in Tao solutions.
(f)	β_1 = in an Ede chart.
(g)	method is used to predict freezing time for frozen fishes.
(h)	Microwave thawing has limited applicability due to
(i)	Bulk freezing is achieved in freezer.
(j)	Food freezing is commonly by contant freezing.

(5)

- 2. (a) Describe the freezers you would use to freeze (any *three*) 3x2=6
 - (i) Cherries
 - (ii) Cod
 - (iii) Prawns
 - (iv) Diced carrots
 - (b) Where does thawing find application in industries? Why is complete thawing not preferred for a food product undergoing processing?2+2=4
 - (c) Sweet cherries, approximately 1.5cm in diameter, are frozen in an IQF system with air at –30°C and a surface heat transfer co-efficient of 50 W/m²K. If the initial temperature of the product is 5°C, how much time will be required to reduce its centre temperature to –15°C? Estimate the freezing time using the Celand-Earle approach. Take all relevant data from standard charts and tables.

For spherical geometry:

$$P = 0.1084 + 0.0924 N_{PK} + N_{Ste}(0.231 N_{PK} - 0.3114/N_{gi} + 0.6739)$$

$$R = 0.0784 + N_{Ste}(0.0386 N_{PK} - 0.1694)$$

 (a) With diagrams, comparatively evaluate the two latest designs of fluidized bed freezing equipments used industrially.

- (a) Write the mathematical expressions (model equation)
 which define die characteristic; metering zone
 characteristic and feed zone charactistic for an
 extruder.
 - (b) How would you calculate LEI, SEI & VEI of extrudates?
 - (c) How do rate of heat transfer relates mass transfer during surface heating of atray of food material?
 - (d) State how does air flow rate relate surface heat transfer coefficient in both parallel and perpendicular flow.
 - (e) Mention the bed height range usually maintained in belt drying.
 - (f) Why 'Bin drier' is used as 'finishing dirier'?
 - (g) Write some applications of drum drying.

6+4+3+2+1+2+2=20

- 8. (a) What do you mean by 'foam mat drying'?
 - (b) Write the advantages of funnel drier.
 - (c) With a schematic diagram show the operating principle of a cabinet drier.
 - (d) Write the objectives of employing
 - (i) distributor
 - (ii) Plenum chambear
 - (iii) free board in fluidized bed drier
 - (e) Mention different types of atomizer used in spray drier and write the mechanism of action of ultrasonic atomizer.
 - (f) How the process of spray drying is designed to cause little damage to food material during drying?

4+2+5+4+3+2=20

PART - II (50 marks)

Answer *q.no.* 1 and any *two* from the rest.

5. Answer any *two* questions :

5x2=10

- (a) Write the principle of entrusion of food material with neat sktech.
- (b) Write the advantages of limitations of different types of air flow pattern in a funnel drier.
- (c) Write a short note on fluidized and drier.
- (a) What are the advantages and disadvantages of entrusion processing over other concentional processing methods.
 - (b) Make a comparison between single sesew and favin sesew entrusion system.
 - (c) Mention the process variables associated with entrusion processing.
 - (d) Entrudate materials are light and brittle (for expanded products)–Why?
 - (e) If the feed material for an entrusion contains high amount of soyabean flour then what type of values are expected for BD, ER & WHC. Justify your answer.
 - (f) Nutritional quality and digestibility of extrudate products are high–Explain. 3+3+3+5+3=20

- (b) A continuous plate-freezing system is being designed to freeze 0.5Kg cod fillet packages at a rate of 500 Kg/h. The package dimensions are 0.04m by 0.1m by 0.14m and it enters the freezer at 5°C. The plates for each station are 1m wide and will accommodate 8 packages of the indicated dimensions. The plates are maintained at a temperature of −30°C and the surface heat transfer co-efficient is 28 W/m²K. The package material has thickness of 8x10⁻⁴m and a thermal conductivity of 0.05 W/mK. Compute the number of freezing stations (or compartments) required for freezing the product to −25°C by Plank and Mott procedures. Use standard tables and charts. Comment on discrepancies of results, if any.
- (a) Diagrammatically describe the operation of a continuous LN freezer. What parameters influence its productivity?
 - (b) What is refrigeration load? How are the following calculated for a cold storage?
 - (i) Freezing load
 - (ii) Respiration load of fruits and vegetables stored in the cold storage. 2+4
 - (c) Using Gurnie-Lurie chart, determine the time required for the centre of a package of meat of $5\text{cm} \times 10\text{cm} \times 30\text{cm}$ dimensions to reach 4.4°C . Consider the following data : t_a = 1.7°C, t_o = 26.7°C, h = 1.95 cal/h/cm²C, C_p = 0.85, K = 5.21 cal/hcm²C, ρ = 1.04g/cc.

(Turn Over)