IV B.Tech I Semester Supplimentary Examinations, November 2008 DISTRIBUTED SYTEMS (Common to Computer Science & Engineering and Electronics &

Computer Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

.....

- 1. (a) Are shared memory multiprocessors distributed systems? Explain
 - (b) Contrast the problems of implementing process migration between work stations and between processors within a shared memory multiprocessor.

[2+6+4+4]

- 2. What are the key design issues of Remote Procedure Call System. [16]
- 3. (a) Can a server invoked by light weight procedure calls control the degree of concurrency within it? Explain.
 - (b) Explain why and how a client is prevented from calling arbitrary code within a server under lightweight RPC. [8+8]
- 4. What is a name service? What are the general name service requirements?[2+14]
- 5. Explain how the conversation takes place between a client and a server in detail.
 [16]
- 6. (a) Explain the two phases in the two-phase commit protocol with the help of a diagram.
 - (b) Discuss the performance of the two phase commit protocol. [6+4+6]
- 7. What is logic of authentication? What are the benefits derived from such a logic. [4+12]
- 8. Explain DSM using write-update with suitable diagram. [10+6]

DISTRIBUTED SYTEMS (Common to Computer Science & Engineering and Electronics &		
Time: 3 hours Max 1	Marks: 80	
Answer any FIVE Questions All Questions carry equal marks ****		
1 Explain about various network technologies.	[16]	
2. (a) Explain in detail the various levels in the client software with respec	et to RPC's.	
(b) What are the features of RPC's.	[8+8]	
3. (a) What is a Null RPC? Explain about RPC performance.		
(b) What are the main components accounting for RPC delay apart from transmission times?	om network $[2+6+8]$	
4. Write the methods for implementation of		
(a) Request ordering		
(b) Totally ordering.	[8+8]	
5. (a) Explain backward validation and forward validation.		
(b) Compare forward and backward validation and explain about star	rvation. $[8+8]$	
6. (a) Explain the reason to have transaction priorities.		
(b) Explain in detail the situation "Probes Travel Downhill"	[8+8]	
7. Explain log for banking service with relevant diagram.	[10+6]	
8. Summarize the abstractions provided by the Mach Kernel in detail.	[16]	

IV B.Tech I Semester Supplimentary Examinations, November 2008

IV B.Tech I Semester Supplimentary Examinations, November 2008 DISTRIBUTED SYTEMS (Common to Computer Science & Engineering and Electronics &

Computer Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.	Explain about various protocol layers in the ISO- OSI protocol model.	[16]
2.	What are the key design issues of Remote Procedure Call System.	[16]
3.	(a) Distinguish between Multiple processes and Threads.	
	(b) Explain in detail about "The aliasing Problem".	[8+8]
4.	Explain about logical time and logical clocks.	[8+8]
5.	Explain ACID properties and how the transaction are failure and how recovered ?	they are [16]
6.	How the virtual partitions are implemented ?	[16]
7.	Explain various methods of attacking and defenses.	[16]
8.	Explain the problems of Write-Update and Write- Invalidation of distribute memory.	ed shared $[8+8]$

IV B.Tech I Semester Supplimentary Examinations, November 2008 DISTRIBUTED SYTEMS (Common to Computer Science & Engineering and Electronics &

Computer Engineering)

Time: 3 hours

Max Marks: 80

[2+6+4+4]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. What are various issues involved in a design of a distributed system. [16]
- 2. (a) What are three protocols involved in RPC Exchange Protocols? Explain.
 - (b) Explain about the following:
 - i. an Idempotent Operation
 - ii. Multipacket messages.
- 3. (a) Can a server invoked by light weight procedure calls control the degree of concurrency within it? Explain.
 - (b) Explain why and how a client is prevented from calling arbitrary code within a server under lightweight RPC. [8+8]
- 4. What is Election? Explain Bully algorithm and Ring based Election Algorithm. [2+7+7]
- 5. Explain how the conversation takes place between a client and a server in detail.

[16]

- 6. Explain about two-phase commit protocol for nested transaction. [16]
- 7. Explain about authentication mechanisms and access control mechanisms. [16]
- 8. (a) Explain about the various kinds of consistency models that are weaker than sequential consistency.
 - (b) What are the advantages of sequential consistency compared to the other consistency models? [8+8]