Practice Set 1

A Whole Content Based Test for Class 7th Mathematics Asiad

1. Which of the following numbers is equal to 36 ?

A $\frac{(-2) \cdot(-3) \cdot 3 \cdot 4}{-2(-2) \cdot 6}$.
$=\frac{(-3) \cdot(-2)}{-3}$
c $\frac{(-2) \cdot 9 \cdot(-3) \cdot(-2)}{3(-2) \cdot 3}$

- $\frac{(-3) \cdot(-2)}{-1}$

2. Simplify and choose the correct option.

$$
\begin{array}{ll}
\quad-[10 \cdot(-2)+(-25)] \mid(-5) \\
\text { A }-9 & \text { B }-5 \\
\text { C }-2 & \text { D } 1
\end{array}
$$

3. Kate bought 4 sweaters that each cost the same amount and 1 skirt that cost ${ }^{`} 20$. The items she bought cost a total of ` 160 before tax was added. If x represents the cost of one sweater, write the correct expression to show the given problem.

A $4 x=160+20$
B $4 x+20=160$
C $4 x-20=160$
D None of the above
4. Evaluate and choose the correct option.

$$
\begin{aligned}
& 1+\frac{1}{3}+\frac{1}{5} \quad \frac{1}{3} \quad \frac{1}{5} \quad+\frac{1}{7} \\
& -1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7} \cdot \frac{1}{3}+-\frac{1}{5} \\
& \text { A } \frac{1}{5} \\
& \text { c } \frac{1}{7} \\
& \begin{array}{l}
\text { B } \frac{1}{3} \\
\text { D } \frac{1}{9}
\end{array}
\end{aligned}
$$

5. Which of the following means $5 n+7=17$?

A 7 more than 5 times a number is 17
B 5 more than 7 times a number is 17
C 7 less than 5 times a number is 17
D 12 times a number is 17
6. Andrew deposited ` 5500 and Anamika deposited \(` 4800\) in a bank. If the bank pays a simple interest of 2% per annum, then how much more interest would Andrew get than Anamika after a year?
A`14 B` 96
C`110 D` 206
7. In the given figure, $A B C$ is a straight line. If
$E F \| A D, \angle B E G=104^{\circ}$ and $\angle B G F=152^{\circ}$, then find the values of x and y.

A $x=132^{\circ}, y=46^{\circ}$
B $x=28^{\circ}, y=132^{\circ}$
C $x=46^{\circ}, y=114^{\circ}$
D None of these
8. A cuboid was made using cardboard. Karishma made some changes to the size of the original cuboid. Sbe increased the length by 10% and the breadth is of the original
breadth. The ratio of the new height to the original height is $11: 10$. If the volume of cuboid is equal to length \times breadth \times height, then what is the new volume of cuboid as a percentage of its original volume?
A 98.6%
B 96.8%
C 94.2%
D 92.4%
9. Three times an angle is equal to two times its complement. What is the value of angle?
A 180°
B 120°
C 36°
D 30°
10. If the speed of light is $3.00 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$, then how far would a beam of light travels in 4000 s ?
A $12 \cdot 10^{12}$
B $1.2 \cdot 10^{10}$
C $1.2 \cdot 10^{12}$
D $1200 \cdot 10^{8}$
11. An insurance policy pays 90% of the first ${ }^{`}$ 20000 of a certain patient's medical expenses, 80% of the next `40000 and \(40 \%\) of the` 40000 after that. If the patient's total bill is ` 92000 , then how much will the policy pay?

$$
\begin{aligned}
& \text { A` } 90000 \\
& \text { B` } 84000 \\
& \text { C` } 70000 \\
& \text { D` } 62800
\end{aligned}
$$

12. In $2010,3,500,000,000,000$ prescription drug orders were filled in India. If the average price of each prescription was roughly ` 65 , then how much did India pay for prescription drugs last year?

A $2.275 \cdot 10^{14}$
B $2.275 \cdot 10^{12}$
C $2.275 \cdot 10^{12}$
D None of the above
13. If $C=\frac{A X}{X+15}$ is the formula for a child's dose of medicine, where A is the adult dose in grams and Y is the child's age in years, then find the dose for a child who is 10 yr old, if the adult dose is 50 g .
A 10 g
B 20 g
C 25 g
D 40 g
14. If $x=-2, y=3$ and $z=-4$, then what is the value of $-4 x+5 y+2 z$?
A 8
B - 8
C 15
D 10
15. A travelling agent gets a commission of 4.5% on the sale of tickets. If on a certain day, he gets `31.5 as commission, then the cost of tickets sold on that day is worth A` 700
B `400 C` 1000
D ` 3150
16. How many lines of symmetry does the given figure have?

A 4
B 6
C 8
D 0
17. What is the front view of the given figure?

18. Simplify and choose the correct option.

$$
\begin{array}{ll}
63-(-3)\{-3-\overline{8-3}\} & \mid 3\{5+(-3)(-1)\} \\
\text { A } 62 & \text { B } 52 \\
\text { C } 46 & \text { D } 72
\end{array}
$$

19. If $\angle 1=32^{\circ}$ and $\angle 2$ and $\angle 3$ are complementary, then the measure of $\angle 4$ is

A 54°
B 32°
C 36°
D 58°
20. Two different brands of air conditioner were sold at the same price of ` 30400 each. The sale of the first set made a profit of \(20 \%\) while that of the second made a loss of \(25 \%\). Find the net gain/loss on the sale of the air conditioners. A Gain` 1520
B Loss`2000 C Loss` 5067
D Gain ` 2000
21. In the given figure, $A B C D$ is a parallelogram such that $A B \| C D$ and $A D \| B C$ with opposite angles equal. If $D A=D X$, then find the values of $\angle m$ and $\angle n$.

A $m=24^{\circ}, n=34^{\circ}$ B $m=24^{\circ}, n=24^{\circ}$
C $m=34^{\circ}, n=24^{\circ}$ D $m=34^{\circ}, n=34^{\circ}$
22. Sammy drew a rectangle that was w inches wide. The expression $2(2 w)+2(w)$ represents the perimeter of the rectangle that Sammy drew. Which statement relates the perimeter to the width of the rectangle?

A The perimeter is 6 inch more than the width
B The perimeter is 6 times the width.
C The perimeter is 2 inch more than the width
D The perimeter is 2 times the width
23. Simplify and choose the correct option.

$$
\begin{gathered}
\frac{\left(2 h j^{2} k^{-2} \cdot h^{4} j^{-1} k^{4}\right)^{0}}{2 h^{-3} j^{-4} k^{-2}} \\
\text { А } h^{8} j^{5} k^{4} \quad \text { в } 2 h^{6} j^{4} k^{4} \text { C } \frac{h^{3} j^{4} k^{2}}{2} \text { D } 2 h^{3} j^{4} k^{2}
\end{gathered}
$$

24. Which of the solid shapes shown could be made from the pattern?

25. Simplify and choose the correct option.

$$
\frac{\left(2 m^{-1} p q^{0}\right)^{-4} \cdot 2 m^{-1} p^{3}}{2 p q^{2}}
$$

A $\frac{m^{3}}{16 p^{2} q_{2}}$
B $16 p^{2} q^{2} m^{3}$
c $\frac{16 m^{2}}{p^{2} q^{2}}$
D $\frac{1}{16 m^{3} p^{2} q^{2}}$
26. In the given figure if $B C$ is parallel to $E F$ and $D C=D B=D A=D E=D F$. Then, what is the value of $\angle C D B$ and sum of $\angle C D F$ and $\angle A D E$?

A 64° and 172°
B 54° and 180°
C 64° and 184°
D 54° and 198°
27. Choose the correct net of the given cube?

Completed cube

28. The formula for the sum of n terms is given
by $S_{n}=n / 2\{2 a+(n-1) d\}$. If $n=10, a=6$ and $d=4$, then S_{n} is equal to
A 200
B 240
C 280
D 300
29. Match the following.

	Column A		Column B
I.	The supplement of 80° is	(i)	10°
II.	The complement of 80° is	(ii)	Hypotenuse
III.	The long side of a right triangle is called	(iii)	Rectangle
IV.	A parallelogram in which an angle is 90° is called a	(iv)	Altitude
		(v)	100°
		(vi)	Square

Codes

	I	II III	IV		I	II III	IV	
A	v	i iv	iii	B	i	v	ii	vi
C	i	v iv	vi	D	v	i	ii	iii

30. Which of the cubes shown could be made from the pattern given?

Solutions

1. (d) Consider, $\frac{(-2) \cdot 3 \cdot(-3) \cdot(-2)}{-1}=-\frac{-\underline{36}}{-1}=36$
2. (a) Consider, $-[10 \cdot(-2)+(-25)] \mid(-5)$

$$
\begin{aligned}
& =-[-20-25] \mid(-5) \\
& =-[-45] \mid(-5) \\
& =45 \mid-5=-9
\end{aligned}
$$

3. (b) Given,

Number of sweaters bought $=4$
and cost of 1 sweater $=x$
\therefore Cost of 4 sweaters $=4 x$
Now, number of skirts bought $=1$
Cost of 1 skirt $=` 20$
\therefore Total cost $=4 x+20$
According to the question,

$$
4 x+20=160
$$

4. (c) Let $\frac{1}{3}+\frac{1}{5}=A$ and $\frac{1}{3}+\frac{1}{5}+\frac{1}{7}=B$

According to the question, we have

$$
(1+A) B-(1+B) A
$$

$$
\begin{aligned}
= & B+A B-A-A B \\
= & B-A \\
& =\frac{1}{3}+\frac{1}{5}+-\frac{1}{7} \quad-\frac{1}{3}+\frac{1}{5}=\frac{1}{7}
\end{aligned}
$$

5. (a) 5 times a number $(n)=5 \mathrm{~N}$

7 more than 5 times a number $=7+5 N$
According to the first statement,

$$
5 N+7=17
$$

6. (a) Amount deposited by Andrew $=` 5500$

Rate of interest $=2 \%$
Time $=1$ yr

$$
\begin{array}{ll}
\text { ime }=1 \mathrm{yr} & ={ }_{5500 \cdot 2 \cdot 1}= \\
\text { Interest earned } & \\
& \\
& 1100
\end{array}
$$

Amount deposited by Anamika $=` 4800$
Rate of interest $=2 \%$
Time $=1 \mathrm{yr}$
\therefore Interest earned $=\frac{4800 \cdot 1 \cdot 2}{100}=96$
\therefore Difference in interests $=`(110-96)=` 14$
7. (b)

In the above figure,
$E F \| A D$
$\angle B E G=104^{\circ}$

$$
\angle B G F=152^{\circ}
$$

Now,
$A D \| G F$
$\Rightarrow \angle X+152^{\circ}=180^{\circ}$ [interior angles on the same side of a transversal are supplementary]
$\therefore \angle x=180^{\circ}-152^{\circ}=28^{\circ}$
Also, $\angle A G F+\angle A G E=180^{\circ}$
[linear pair]
$\therefore 152^{\circ}+\angle A G E=180^{\circ}$
$\Rightarrow \angle A G E=180^{\circ}-152^{\circ}=28^{\circ}$
Now, in $B E G$,

$$
\angle B E G+\angle B G E=\angle y
$$

[exterior angle is equal to the sum of interior opposite angles]
$\therefore \angle y=104^{\circ}+28^{\circ}=132^{\circ}$
8. (b) Let original length be l, original breadth be w and original height be h.
Original volume $=/ w h$

New breadth $=\frac{4}{5} w$
and new height $=\frac{11}{10} h$
New volume, $\frac{11}{10} l \cdot \frac{4}{5} w \cdot \frac{11}{10} h \quad=\frac{484}{500} / w h$
$=0.968 \mathrm{lwh}$
\therefore New volume as a percentage of original volume

$$
=\frac{0.968 / w h}{I w h} \cdot 100=96.8 \%
$$

9. (c) Let the angle be x and complement be y.

Then, $\quad 3 x=2 y$
$\Rightarrow \quad y=\frac{3}{2} x=1.5 x$
Now, $x+y=90^{\circ} \quad$ [complementary angles]
$\Rightarrow x+1.5 x=90^{\circ} \Rightarrow$
$2.5 x=90^{\circ}$
$\Rightarrow x=36^{\circ}$
10. (c) Speed of light $=3.00 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$

Time to travel $=4000 \mathrm{~s}$
Distance travelled $=3 \cdot 10^{8} \cdot 4000$

$$
=12000 \cdot 10^{8}=1.2 \cdot 10^{12}
$$

11. (d) Patient's total bill $={ }^{`} 92000$

Money back on first `20000 $={ }^{90}-20000100$

Remaining amount $=92000-20000-40000$

$$
=` 32000
$$

Money back on remaining amount

$$
\begin{aligned}
& { }^{=} \frac{32000 \cdot 40}{100} \\
& =` 12800
\end{aligned}
$$

\therefore Total money received from insurance

$$
\begin{aligned}
& =` 18000+` 32000+` 12800 \\
& =` 62800
\end{aligned}
$$

12. (a) Prescription orders in India, for 2010

$$
\begin{aligned}
& =3,500,000,000,000 \\
& =3.5 \cdot 10^{12}
\end{aligned}
$$

Average price of each prescription $=` 65$
\therefore Total price $={ }^{`} 65 \cdot 3.5 \cdot 10^{12}$

$$
=227.5 \cdot 10^{12}=2.275 \cdot 10^{14}
$$

13. (b) Given, $C=\frac{A X}{X+15}$

Here, $A=50 \mathrm{~g}$ and $X=10 \mathrm{yr}$
$\therefore C=50.10=500=\frac{20 \mathrm{~g}}{2510}$
14. (c) Consider, $-4 x+5 y+2 z$

Given, $x=-2, y=3$ and $z=-4$
$\therefore-4(-2)+5(3)+2(-4)$
$\Rightarrow 8+15-8=15$
15. (a) Commission received by travelling agent at rate $=4.5 \%$

Amount of commission received $=` 31.5$
We have, $\stackrel{4.5}{ } x=` 31.5100$
$\therefore \quad x=\frac{31.5}{4.5} \cdot 100=700$
16. (b) It has 6 lines of symmetry.
17. (c)
18. (a) Consider, $63-(-3)\{-3-\overline{8-3}\} \mid 3\{5+(-3)(-1)\}$

$$
\begin{aligned}
& =63+3\{-3-5\} \mid 3(5+3)\} \\
& =63+3\{-8\} \mid 3(8) \\
& =63-24 \mid 24=63-1=62
\end{aligned}
$$

19. (d) Give

$$
\angle 1=32^{\circ}
$$

and

$$
\angle 2+\angle 3=90^{\circ}
$$

Also,
$\angle 1+\angle 2=90^{\circ}$
$\Rightarrow \quad \angle 1=\angle 3=32^{\circ}$
We know that, $\angle 3+\angle 4=90^{\circ}$
$\Rightarrow \quad 32^{\circ}+\angle 4=90^{\circ}$
$\Rightarrow \quad \angle 4=90^{\circ}-32^{\circ}=58^{\circ}$
20. (c) Let the cost of air conditioner be x.

Profit on sales of first type air conditioner $=20 \%$
Sales price of first type air conditioner $=30400$
So, $\frac{120}{100} \cdot x=30400$
$\Rightarrow \quad x=\frac{30400 \cdot 100}{120}=25333.33$
Loss on sales of second type air conditioner $=25 \%$
So, $\frac{75}{100} \cdot x=30400$
$\Rightarrow \quad x=\frac{30400 \cdot 100}{75}=40533.33$
Total cost price $=25333.33+40533.33=65866.66$
Total sell $=2 \cdot 30400=60800$
Gain/Loss $=60800-65866.66=-5066.66 \approx-5067$
21. (c) Given, $\quad A D \| B C$,
$A B \| C D$
and $\angle A=\angle C, \angle B=\angle D$
Also, given $\angle C=78^{\circ} \Rightarrow \angle A=78^{\circ}$
In $A D X$,

$$
A D=X D
$$

$\begin{array}{rlrl} & A D & =X D \\ \Rightarrow & & \angle D A X & =\angle D X A\end{array}$
[angle opposite to equal sides are also equal]
$\therefore \angle D X A=78^{\circ}$
Also, $\left.\angle A D X+\angle D A X+\angle D X A=180^{\circ}\right]$
[sum of three angles of a triangle is 180°]
$\Rightarrow n+78^{\circ}+78^{\circ}=180^{\circ}$
$\therefore n=24^{\circ}$
Also, $\quad A B \| C D$
$\therefore \angle A B C+\angle B C D=180^{\circ}$
$\therefore m+68^{\circ}+78^{\circ}=180^{\circ}$
[interior angles on the same side of transversal are supplementary]
22. (b) By the given statement in question,

Perimeter $=2(2 w)+2(w)=4 w+2 w=6 w$
where, W is the width of the rectangle in inches.
23. (c) Consider $\frac{\left(2 h j^{2} k^{-2} \cdot h^{4} j^{-1} k^{4}\right)^{0}}{2 h^{-3} j^{-4} k_{-2}}$

We know that, $a^{0}=1$
\therefore Numerator $=1$
Denominator $=2 h^{-3} j^{-4} k^{-2}$
So, we have

$$
\frac{1}{2 h^{-3} j^{-4} k}=\frac{h^{3} j^{4} k^{2}}{2} \quad \text {.. } \quad-m=-\frac{1}{a}
$$

24. (d) By folding the given pattern we get this shape.
25. (a) Consider, $\frac{\left(2 m^{-1} p q^{0}\right)^{-4} \cdot 2 m^{-1} p^{3}}{2 p q_{2}}$
$=\frac{\left(2^{-4}\right)\left(m^{-1}\right)^{-4}\left(p^{-4}\right)\left(q^{0}\right)^{-4} \cdot 2 m^{-1} p^{3}}{2 p q^{2}} \quad\left[\left(a^{m}\right)^{n}=a^{m \cdot n}\right]$
$=\frac{2^{-4} m^{4} p^{-4} \cdot 1 \cdot 2 m^{-1} p^{3}}{2 p q^{2}} \quad\left[a^{0}=1\right]$
$=\frac{m^{3}}{2^{4} \dot{p q}^{2}} \quad Q a^{-m}=\frac{1}{a^{m}}, \frac{a^{m}}{a^{n}}=\boldsymbol{a}^{m-n}, \boldsymbol{a}^{m} \cdot \boldsymbol{a}^{n}=\boldsymbol{a}^{m+n}$
$=\frac{m^{3}}{16 p^{2} q}$
26. (d) Consider $D C B$,
$\angle a+\angle b+\angle D C B=180^{\circ}$
$\Rightarrow \angle a+\angle b+63^{\circ}=180^{\circ} \Rightarrow$
$\angle a+\angle b=117^{\circ}$
Also, $\angle b=63^{\circ}[Q D C=D B]$
$\Rightarrow \angle a=54^{\circ}$
In $D A B, \quad D B=D A$
$\Rightarrow \quad \angle d=\angle B A D$
$\Rightarrow \quad \angle d=63^{\circ}$
$\therefore \quad \angle e=54^{\circ}$
Also, $\quad C B \| F E$
$\Rightarrow \quad \angle b=\angle g \quad$ [alternate angles]
$\Rightarrow \angle g=63^{\circ}$
Also, $\quad D F=D E$
$\Rightarrow \angle g=\angle h \therefore \angle h=$
63°
In DFE,

$$
\begin{array}{rrrl}
& & \angle f+\angle g+\angle h=180^{\circ} \\
\Rightarrow & \angle f+63^{\circ}+63^{\circ}=180^{\circ} \\
\Rightarrow & & \angle f=54^{\circ}
\end{array}
$$

Now, $\angle C D F+\angle C D B=180^{\circ} \quad$ [linear pair]

$$
\Rightarrow \quad \angle C D F+54^{\circ}=180^{\circ}
$$

Similarly,
$\angle e+\angle f+\angle A D E=180^{\circ} \quad$ [linear pair]
$\Rightarrow 54^{\circ}+54^{\circ}+\angle A D E=180^{\circ}$
$\Rightarrow \quad \angle A D E=72^{\circ}$
$\therefore \quad \angle C D F+\angle A D E=126^{\circ}+72^{\circ}=198^{\circ}$
27. (b) Opening the given cube we get this net.
28. (b) Given, $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$

Here, $n=10, a=6$ and $d=4$
$\therefore S_{10}=\frac{10}{2}\{2 \cdot 6+(10-1) 4\}=5\{12+36\}=240$
29. (d) I. Supplement of $80^{\circ}=180^{\circ}-80^{\circ}=100^{\circ}$
II. Complement of $80^{\circ}=90^{\circ}-80^{\circ}=10^{\circ}$
III. Hypotenuse
IV. Rectangle
30. (a) The given net folds to form the figure given in this cube.

