Institute of Mathematics and Applications, Bhubaneswar Entrance Test-2012 B.Sc (Hons): Mathematics and Computing Max Marks: 100 Max Time: Two Hours

All questions are compulsory. Each question has 4 choices A, B, C and D, out of which *only one* is correct. Choose the correct answer. Each question carries +4 marks for the correct answer and -1 mark for a wrong answer.

- 1. If \mathbb{N} is the set of all natural numbers. Let mRn, if n is divisible by m. The relation R is
 - A. reflexive and symmetric
 - B. transitive and antisymmetric
 - C. symmetric but not transitive
 - D. none of the above
- 2. Only one of the following is a function which one is it?
 - A. $\{(x^2, x) : x \in \mathbb{R}\}$ B. $\{(x, y) : x^2 + y^2 = 25, x, y \in \mathbb{R}\}$ C. $\{(x, \cos x) : x \in \mathbb{R}\}$ D. $\{(x, y) : x^3 + y^3 - 3xy = 0, x, y \in \mathbb{R}\}$
- 3. Let ABC be an equilateral triangle and P is a point within it satisfying $AP^2 = BP^2 + CP^2$. The locus of P is
 - A. a straight line
 - B. a parabola
 - C. a circle
 - D. an ellipse
- 4. The last two digits of 19^{39} are
 - A. 10
 - B. 03
 - C. 59
 - D. 79

5. Let (x_0, y_0) be the solution of following equation

$$(2x)^{\ln 2} = (3y)^{\ln 3}, (3)^{\ln x} = (2)^{\ln y},$$

then x_0 is

- A. 1/6
 B. 1/3
 C. 1/2
 D. 6
- 6. In how many ways 5 sweets can be distributed among 3 children so that every one gets at least one?
- A. 10 B. 20 C. 6 D. 4 7. $1 - x - e^{-x} > 0$ for A. all $x \in \mathbb{R}$ B. no $x \in \mathbb{R}$ C. x > 0

D.
$$x < 0$$

8. Let $A = {\sin x | 0 < x < \pi}$. What does it mean if we say y is an element of A?

- A. $\sin y$ is between 0 and π
- B. y is between $\sin(0)$ and $\sin(\pi)$
- C. y is between 0 and π
- D. $y = \sin x$ for some $0 < x < \pi$
- 9. The number of points where the graph of the function $f(x) = x^3 + 2x^2 + 2x + 1$ cuts the abscissa is
 - A. 1
 - B. 2
 - C. 3
 - D. 0

- 10. If one is solving three linear equations involving two unknowns, what happens?
 - A. usually there will be one solution, but occasionally there will be no solution or infinitely many solutions.
 - B. anything can happen.
 - C. usually there will never be a solution.
 - D. there will always be a solution.
- 11. The number of solutions of the following system

$$x + y + z = 3,$$

 $2x + 3y + 4z = 9,$
 $4x + 5y + 6z = 10,$

is

- A. 0B. 1
- C. 2
- D. infinitely many

12. If $a_1, a_2, ..., a_n$ are positive real numbers then $\frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$ is always

A. $\geq n$ B. $\leq n$ C. $\leq n^{1/n}$ D. $\geq n^{1/n}$

13. The coefficient of t^3 in the expansion of $\left(\frac{1-t^6}{1-t}\right)^3$ is

A. 10B. 12C. 8D. 9

14. $(\sqrt{5}+2)^{10} + (\sqrt{5}-2)^{10}$ is equal to A. $[(\sqrt{5}+2)^{10}] + 1$ B. 4149 C. 10249 D. none of the above 15. Sum of $\binom{n}{0} - \binom{n}{2} + \binom{n}{4} - \binom{n}{6}$ equal to A. 2^n B. 0 C. $2^{(n+2)/2} \cos(n\pi)/4$ D. $2^{(n+1)/2} \sin(n\pi)/4$

- 16. The set of complex numbers z satisfying the equation $(3+7i)z+(10-2i)\bar{z}+100=0$ represents in the complex plane
 - A. a point
 - B. a straight line
 - C. a pair of intersecting straight lines
 - D. a pair of distinct parallel lines
- 17. Let $\mathbb{Z}_3 = \{0, 1, 2\}$. The number of 2×2 matrices with entries from the set \mathbb{Z}_3 with determinant 1 is
 - A. 24B. 60C. 20D. 30
- 18. Let A be 4×4 matrix with determinant 3. Let B be the matrix formed by subtracting two copies of the third row from first. What is det(B)?
 - A. -6
 B. 6
 C. 3
 D. 0

19. In the Taylor expansion of the function $f(x) = e^{x/2}$ about x = 3, the coefficient of $(x-3)^5$ is

A.
$$e^{3/2} \frac{1}{5!}$$

B. $e^{3/2} \frac{1}{2^5 5!}$
C. $e^{-3/2} \frac{1}{2^5 5!}$
D. $e^{-3/2} \frac{1}{5!}$

- 20. Let (x, y) be any point on the parabola $y^2 = 4x$. Let P be the point that divides the line segment from (0, 0) to (x, y) in 1 : 3. Then locus of P is
- A. $x^2 = y$ B. $y^2 = 2x$ C. $y^2 = x$ D. $x^2 = 2y$ 21. $\lim_{x\to 0} \frac{(1+x)^{1/x} - e}{x}$ is A. 0 B. $\frac{-e}{2}$ C. $\frac{5e}{2}$ D. doesn't exit. 22. If $f(x) = \begin{cases} \sin[x] & , x \neq 0, \text{ where } [x] \text{ is a greatest integer function.} \\ -x & , x = 0. \end{cases}$ Then $\lim_{x\to 0} f(x)$ is A. 0 B. 1 C. -1 D. doesn't exit. 23. Let $f(x) = \min\{x, x^2, x^3\}$. The number of points where f is not differentiable
 - but continuous is
 - A. 1
 - B. 2
 - C. 3

D. none of the above

24. Let f(x) be a polynomial of degree 23 and f(-x) = -f(x) for $|x| \ge 10$. If $\int_{-1}^{1} (f(x) + c) dx = 4$, then c is equal to A. 0 B. 1 C. 2 D. 10 25. $\int_{0}^{\pi} \frac{1}{1 + \sin x} dx$ is equal to A. 0 B. 1 C. 2 D. 5