RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah – 711 202

ADMISSION TEST – 2016

MATHEMATICS (Honours)

Date : 15-06-2016

Full Marks : 50

Time: 11.00 a.m - 12.30 p.m

Instructions for the candidate

Answer all the questions given below. Each question carries 2 marks for correct answer and (-1) marks for wrong answer. Tick (\checkmark) the correct option. The tick must be very clear — if it is smudgy or not clear, no marks will be awarded. Calculator not allowed.

1. A set A has 10 elements and let $\mathcal{A} = \{X \subseteq A : |X| \ge 4, |X-A| \ge 4\}$ where |X|, |X-A| respectively denote

the number of elements in X and the number of elements in X - A. Then the number of elements in \mathcal{A} is

	a) 648	b) 672	c) 692	d) 712				
2.	A set A contains 3 elements. The number of maps from A to A which are not surjective is							
	a) 15	b) 18	c) 21	d) 24				
3.	Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3, x \in \mathbb{R}$; where \mathbb{R} is the set of all real numbers. Then							
	a) f is injective but not su	•	b) f is surjective but not injective					
	c) f is neither injective nor surjective		d) f is bijective					
4.	Suppose X is a finite set and Φ be the set of all binary relations on X. Suppose Φ contains n relations. The possible value of n is							
	a) 112	b) 210	c) 386	d) 512				
5.	Suppose $X = \{1, 2\}$. The number of transitive relations on X is							
	a) 7	b) 10	c) 13	d) 15				
6.	Two tangents, perpendicular to each other, to the parabola $y^2 = 4ax$ intersect on the line							
	a) $\mathbf{x} = \mathbf{a}$	b) $x + a = 0$	c) $x + 2a = 0$	d) $x - 2a = 0$				
7.		he foci of the ellipse $25(x+1)^2 + 9(y+2)^2 = 225$ are						
	a) (-1,2), (6,1)	b) (-1,-2), (1,6)	c) $(1,-2), (1,-6)$	d) (-1,2), (-1,-6)				
8.	The equation of the direc	ne equation of the director circle of the hyperbola $9x^2 - 16y^2 = 144$ is						
	a) $x^2 + y^2 = 7$	b) $x^2 + y^2 = 9$	c) $x^2 + y^2 = 16$	d) $x^2 + y^2 = 25$				
9.	The circles $x^2 + y^2 - 4x + 10y + 20 = 0$ and $x^2 + y^2 + 8x - 6y - 24 = 0$							
	a) touch each other intern	nally	b) touch each other externally					
	c) cut each other		d) cut each other orthogonally					
10.	The vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 3\hat{j} - 5\hat{k}$, $\vec{c} = 3\hat{i} - 4\hat{j} - 4\hat{k}$ form the sides of a							
	a) equilateral triangle	, e	c) right angled triangle	d) none of these				
11.	The value of $\lim_{n \to \infty} \left(\frac{n}{n^2} + \frac{n+1}{n^2} + \frac{n+2}{n^2} + \dots + \frac{2n}{n^2} \right)$ is							
	a) 1	b) 0	c) $\frac{1}{2}$	d) $\frac{3}{2}$				
			2	2				
		$\frac{1}{2}$, x $\neq 0$						
12.	The jump of $f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0 \\ x & x \end{cases}$							
	[1,	x = 0 at $x = 0$ is						
	a) 0	b) -1	c) 2	d) 1				
13.	At $x = 0$, the function $f(x)$	\mathbf{x}) = $\mathbf{x} \mathbf{x} $ is						
	a) continuous only	only b) discontinuous						
	c) continuous and differe	inuous and differentiable d) continuous but not differentiable						

14.	In the MVT, $f(a+h) = f(a+h)$	$(a) + hf'(a + \theta h)$, for $a = 1$, h	$f = 3$ and $f(x) = \sqrt{x}$ the value	e of 12θ will be				
	a) 1	b) 11	c) 5	d) 10				
15.	If $f(x) = \mu x - \sin x$ be a r		\ 1	1) 1				
	a) $\mu > -1$	b) μ<1	· •	d) $\mu < -1$				
16.	A function f is defined by $f(x) = \frac{1}{2^{r-1}}, \frac{1}{2^r} < x \le \frac{1}{2^{r-1}}, r = 1, 2, 3, \dots$ The value of $\int_{0}^{1} f(x) dx$ is							
	a) $\frac{1}{3}$	b) $\frac{1}{4}$	c) $\frac{2}{3}$	d) none of these				
17.	The area bounded by curves $y = x^2$, $y = \frac{2}{1 + x^2}$ is							
	a) $\pi - \frac{2}{3}$	b) $\frac{\pi}{2} - \frac{1}{3}$	c) $2\pi - \frac{1}{3}$	d) none of these				
18.	The sum of the infinite series $\cot^{-1} 2 + \cot^{-1} 8 + \cot^{-1} 32 + \dots$ is equal to							
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{6}$	d) $\frac{\pi}{8}$				
	5	4	0	8				
19.	If $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \tan^{51} x} = K$ then value of K is							
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{-}$	c) $\frac{\pi}{6}$	d) $\frac{\pi}{}$				
	Z	5	6	d) $\frac{\pi}{12}$				
20.	Numerical value of $\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14}$ is							
	a) $\frac{1}{8}$	b) $\frac{1}{4}$	c) $\frac{1}{2}$	d) none of these				
21.	Ignoring the order of drawing, two cards are drawn from a full pack of 52 cards. The probability of one is a heart and the other is a diamond is							
	a) $\frac{25}{102}$	b) $\frac{13}{102}$	c) $\frac{26}{102}$	d) $\frac{52}{102}$				
	102	102		102				
22.	A box contains twenty tickets of identical appearance, the tickets being numbered 1, 2, 3,, 20. If 3 tickets are chosen at random, the probability that the numbers on the drawn tickets are in arithmetic progression is 20							
	a) $\frac{3}{38}$	b) $\frac{20}{38}$	c) $\frac{3}{20}$	d) $\frac{9}{20}$				
23.	A random variable has the following probability distribution							
	x : 4 5 6 8 probability : 0.1 0.3 0.4 0.2							
	1 2	S.D) of the random variable i						
	a) 1·22	b) 2·22	c) 3·23	d) 4·24				
24.	The differential equation of all circles each of which touches the axis of x at the origin is							
	a) $(x^2 - y^2)\frac{dy}{dx} = 2xy$	b) $(x^2 - y^2)y = 2x \frac{dy}{dx}$	c) $\left(y - \frac{dy}{dx}\right) \frac{dy}{dx} = 2x$	d) $2xy = (x^2 + y^2)\frac{dy}{dx}$				
25.	The general solution of the differential equation $\frac{dy}{dx} + Py = Q$, can be written in the form							
	· •	b) $y = k(u - v) + v$	c) $y = k(u+v) + v$	d) $y = k(u-v) + u$				
	where P, Q and K are constant, u and v are its two particular solutions.							
	\sim							

(2)

×