RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202
ADMISSION TEST - 2016
MATHEMATICS (Honours)
Full Marks : 50
Time: 11.00 a.m -12.30 p.m

Instructions for the candidate

Answer all the questions given below. Each question carries $\mathbf{2}$ marks for correct answer and ($\mathbf{- 1}$) marks for wrong answer. Tick (\checkmark) the correct option. The tick must be very clear - if it is smudgy or not clear, no marks will be awarded. Calculator not allowed.

1. A set A has 10 elements and let $\mathscr{A}=\{X \subseteq A:|X| \geq 4,|X-A| \geq 4\}$ where $|X|,|X-A|$ respectively denote the number of elements in X and the number of elements in $\mathrm{X}-\mathrm{A}$. Then the number of elements in \mathscr{A} is
a) 648
b) 672
c) 692
d) 712
2. A set A contains 3 elements. The number of maps from A to A which are not surjective is
a) 15
b) 18
c) 21
d) 24
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}, x \in \mathbb{R}$; where \mathbb{R} is the set of all real numbers. Then
a) f is injective but not surjective
b) f is surjective but not injective
c) f is neither injective nor surjective
d) f is bijective
4. Suppose X is a finite set and Φ be the set of all binary relations on X. Suppose Φ contains n relations. Then the possible value of n is
a) 112
b) 210
c) 386
d) 512
5. Suppose $X=\{1,2\}$. The number of transitive relations on X is
a) 7
b) 10
c) 13
d) 15
6. Two tangents, perpendicular to each other, to the parabola $y^{2}=4 a x$ intersect on the line
a) $x=a$
b) $x+a=0$
c) $x+2 a=0$
d) $x-2 a=0$
7. The foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$ are
a) $(-1,2),(6,1)$
b) $(-1,-2),(1,6)$
c) $(1,-2),(1,-6)$
d) $(-1,2),(-1,-6)$
8. The equation of the director circle of the hyperbola $9 x^{2}-16 y^{2}=144$ is
a) $x^{2}+y^{2}=7$
b) $x^{2}+y^{2}=9$
c) $x^{2}+y^{2}=16$
d) $x^{2}+y^{2}=25$
9. The circles $x^{2}+y^{2}-4 x+10 y+20=0$ and $x^{2}+y^{2}+8 x-6 y-24=0$
a) touch each other internally
b) touch each other externally
c) cut each other
d) cut each other orthogonally
10. The vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}, \vec{c}=3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the sides of a
a) equilateral triangle
b) isosceles triangle
c) right angled triangle
d) none of these
11. The value of $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}}+\frac{n+1}{n^{2}}+\frac{n+2}{n^{2}}+\ldots+\frac{2 n}{n^{2}}\right)$ is
a) 1
b) 0
c) $\frac{1}{2}$
d) $\frac{3}{2}$
12. The jump of $f(x)=\left\{\begin{array}{l}\frac{|x|}{x}, x \neq 0 \\ 1, x=0 \quad \text { at } x=0 \text { is }\end{array}\right.$
a) 0
b) -1
c) 2
d) 1
13. At $x=0$, the function $f(x)=x|x|$ is
a) continuous only
b) discontinuous
c) continuous and differentiable
d) continuous but not differentiable
14. In the MVT, $f(a+h)=f(a)+h f^{\prime}(a+\theta h)$, for $a=1, h=3$ and $f(x)=\sqrt{x}$ the value of 12θ will be
a) 1
b) 11
c) 5
d) 10
15. If $\mathrm{f}(\mathrm{x})=\mu \mathrm{x}-\sin \mathrm{x}$ be a monotonic increasing then
a) $\mu>-1$
b) $\mu<1$
c) $\mu>1$
d) $\mu<-1$
16. A function f is defined by $f(x)=\frac{1}{2^{r-1}}, \frac{1}{2^{r}}<x \leq \frac{1}{2^{r-1}}, r=1,2,3, \ldots . . .$. . The value of $\int_{0}^{1} f(x) d x$ is
a) $\frac{1}{3}$
b) $\frac{1}{4}$
c) $\frac{2}{3}$
d) none of these
17. The area bounded by curves $y=x^{2}, y=\frac{2}{1+x^{2}}$ is
a) $\pi-\frac{2}{3}$
b) $\frac{\pi}{2}-\frac{1}{3}$
c) $2 \pi-\frac{1}{3}$
d) none of these
18. The sum of the infinite series $\cot ^{-1} 2+\cot ^{-1} 8+\cot ^{-1} 18+\cot ^{-1} 32+\ldots$. is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{8}$
19. If $\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\tan ^{51} x}=K$ then value of K is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{12}$
20. Numerical value of $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14}$ is
a) $\frac{1}{8}$
b) $\frac{1}{4}$
c) $\frac{1}{2}$
d) none of these
21. Ignoring the order of drawing, two cards are drawn from a full pack of 52 cards. The probability of one is a heart and the other is a diamond is
a) $\frac{25}{102}$
b) $\frac{13}{102}$
c) $\frac{26}{102}$
d) $\frac{52}{102}$
22. A box contains twenty tickets of identical appearance, the tickets being numbered $1,2,3, \ldots, 20$. If 3 tickets are chosen at random, the probability that the numbers on the drawn tickets are in arithmetic progression is
a) $\frac{3}{38}$
b) $\frac{20}{38}$
c) $\frac{3}{20}$
d) $\frac{9}{20}$
23. A random variable has the following probability distribution

x	$:$	4	5	6	8
probability	$:$	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 2$

The standard deviation (S.D) of the random variable is
a) 1.22
b) 2.22
c) 3.23
d) $4 \cdot 24$
24. The differential equation of all circles each of which touches the axis of x at the origin is
a) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y$
b) $\left(x^{2}-y^{2}\right) y=2 x \frac{d y}{d x}$
c) $\left(y-\frac{d y}{d x}\right) \frac{d y}{d x}=2 x$
d) $2 x y=\left(x^{2}+y^{2}\right) \frac{d y}{d x}$
25. The general solution of the differential equation $\frac{d y}{d x}+P y=Q$, can be written in the form
a) $y=u+v+k$
b) $y=k(u-v)+v$
c) $y=k(u+v)+v$
d) $y=k(u-v)+u$
where P, Q and K are constant, u and v are its two particular solutions.

