MADHAVA MATHEMATICS COMPETITION
 (A Mathematics Competition for Undergraduate Students)
 Organized by
 Department of Mathematics, S.P.College, Pune and
 Homi Bhabha Centre for Science Education, T.I.F.R., Mumbai

Date: 13/12/2015
Max. Marks:100
Time: 12.00 noon to 3.00 p.m.
N.B.: Part I carries 20 marks, Part II carries $\mathbf{3 0}$ marks and Part III carries 50 marks.

Part I

N.B. Each question in Part I carries 2 marks.

1. Let $A(t)$ denote the area bounded by the curve $y=e^{-|x|}$, the X - axis and the straight lines $x=-t, x=t$, then $\lim _{t \rightarrow \infty} A(t)$ is
A) 2
B) 1
C) $1 / 2$
D) e.
2. How many triples of real numbers (x, y, z) are common solutions of the equations $x+y=2, \quad x y-z^{2}=1$?
A) 0 B) 1 C) 2 D) infinitely many.
3. For non-negative integers x, y the function $f(x, y)$ satisfies the relations $f(x, 0)=x$ and $f(x, y+1)=f(f(x, y), y)$. Then which of the following is the largest?
A) $f(10,15)$
B) $f(12,13)$
C) $f(13,12)$
D) $f(14,11)$.
4. Suppose p, q, r, s are $1,2,3,4$ in some order. Let $x=\frac{1}{p+\frac{1}{q+\frac{1}{r+\frac{1}{s}}}}$

We choose p, q, r, s so that x is as large as possible, then s is
A) 1 B) 2 C) 3 D) 4 .
5. Let $f(x)=\left\{\begin{array}{ll}3 x+x^{2} & \text { if } x<0 \\ x^{3}+x^{2} & \text { if } x \geq 0 .\end{array}\right.$ Then $f^{\prime \prime}(0)$ is
A) 0
B) 2
C) 3
D) None of these.
6. There are 8 teams in pro-kabaddi league. Each team plays against every other exactly once. Suppose every game results in a win, that is, there is no draw. Let $w_{1}, w_{2}, \cdots, w_{8}$ be number of wins and $l_{1}, l_{2}, \cdots, l_{8}$ be number of loses by teams $T_{1}, T_{2}, \cdots, T_{8}$, then
A) $w_{1}^{2}+\cdots+w_{8}^{2}=49+\left(l_{1}^{2}+\cdots+l_{8}^{2}\right)$.
B) $w_{1}^{2}+\cdots+w_{8}^{2}=l_{1}^{2}+\cdots+l_{8}^{2}$.
C) $w_{1}^{2}+\cdots+w_{8}^{2}=49-\left(l_{1}^{2}+\cdots+l_{8}^{2}\right)$.
D) None of these.
7. The remainder when $m+n$ is divided by 12 is 8 , and the remainder when $m-n$ is divided by 12 is 6 . If $m>n$, then the remainder when $m n$ divided by 6 is
A) 1
B) 2
C) 3
D) 4 .
8. Let $A=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ n+1 & n+2 & \ldots & 2 n \\ \vdots & \ddots & \vdots & \\ (n-1) n+1 & (n-1) n+2 & \ldots & n^{2}\end{array}\right)$. Select any entry and call it x_{1}. Delete row and column containing x_{1} to get an $(n-1) \times(n-1)$ matrix. Then select any entry from the remaining entries and call it x_{2}. Delete row and column containing x_{2} to get $(n-2) \times(n-2)$ matrix. Perform n such steps. Then $x_{1}+x_{2}+\cdots+x_{n}$ is
A) n
B) $\frac{n(n+1)}{2}$
C) $\frac{n\left(n^{2}+1\right)}{2}$
D) None of these.
9. The maximum of the areas of the rectangles inscribed in the region bounded by the curve $y=3-x^{2}$ and X-axis is
A) 4 B) 1
C) 3 D$) 2$.
10. How many factors of $2^{5} 3^{6} 5^{2}$ are perfect squares?
A) 24
B) 20
C) 30
D) 36 .

Part II

N.B. Each question in Part II carries 6 marks.

1. How many 15 -digit palindromes are there in each of which the product of the non-zero digits is 36 and the sum of the digits is equal to 15 ? (A string of digits is called a palindrome if it reads the same forwards and backwards. For example 04340, 6411146.)
2. Let H be a finite set of distinct positive integers none of which has a prime factor greater than 3. Show that the sum of the reciprocals of the elements of H is smaller than 3 . Find two different such sets with sum of the reciprocals equal to 2.5 .
3. Let A be an $n \times n$ matrix with real entries such that each row sum is equal to one. Find the sum of all entries of A^{2015}.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f(0)=0, f^{\prime}(x)>f(x)$ for all $x \in \mathbb{R}$. Prove that $f(x)>0$ for all $x>0$.

5 . Give an example of a function which is continuous on $[0,1]$, differentiable on $(0,1)$ and not differentiable at the end points. Justify.

Part III

1. There are some marbles in a bowl. A, B and C take turns removing one or two marbles from the bowl, with A going first, then B, then C, then A again and so on. The player who takes the last marble from the bowl is the loser and the other two players are the winners. If the game starts with N marbles in the bowl, for what values of N can B and C work together and force A to lose?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f^{\prime}(0)$ exists. Suppose $\alpha_{n} \neq \beta_{n}, \forall n \in \mathbb{N}$ and both sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ converge to zero. Define $D_{n}=\frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}$. Prove that $\lim _{n \rightarrow \infty} D_{n}=f^{\prime}(0)$ under EACH of the following conditions:
(a) $\alpha_{n}<0<\beta_{n}, \forall n \in \mathbb{N}$.
(b) $0<\alpha_{n}<\beta_{n}$ and $\frac{\beta_{n}}{\beta_{n}-\alpha_{n}} \leq M, \forall n \in \mathbb{N}$, for some $M>0$.
(c) $f^{\prime}(x)$ exists and is continuous for all $x \in(-1,1)$.
3. Let $f(x)=x^{5}$. For $x_{1}>0$, let $P_{1}=\left(x_{1}, f\left(x_{1}\right)\right)$. Draw a tangent at the point P_{1} and let it meet the graph again at point P_{2}. Then draw a tangent at P_{2} and so on. Show that the ratio $\frac{A\left(\triangle P_{n} P_{n+1} P_{n+2}\right)}{A\left(\triangle P_{n+1} P_{n+2} P_{n+3}\right)}$ is constant.
4. Let $p(x)$ be a polynomial with positive integer coefficients. You can ask the question: What is $p(n)$ for any positive integer n ? What is the minimum number of questions to be asked to determine $p(x)$ completely? Justify.
