Section-I: General Aptitude

1. The values of x which satisfy $(x-1)(x)(x+1) \leq 0$ is / are
i. $\mathrm{x} \leq 0$;
ii. $x \leq-1$
iii. $0 \leq x \leq 1$
(A) Only I
(B) Both ii and iii
(C) Both i and ii
(D) Both i and iii
2. Gateforum awarded annual bonuses to its employees. Of the employees at the company, 70% received bonuses of at least $10,000,40 \%$ received bonuses of at least 50,000 , and 20% received bonuses of at least $1,00,000$. If 60 employees received bonuses of less than 10,000 , how many employees received bonuses of at lest 50,000 but less than $1,00,000$?
(A) 80
(B) 50
(C) 48
(D) 40
3. A sum of money compounded annually amounts to thrice itself in 10 years. In how many years, will it become 9 times itself?
(A) 6
(B) 8
(C) 10
(D) 12
4. Babita was asked to calculate the arithmetic mean of ten positivetwo digit integers. By mistake, she interchanged the two digits, say t and u, in one of these ten integers. As a result, her answer for the arithmetic mean was 1.8 more than what it should have been. Then u-t equals
(A) 1
(B) 2
(C) 3
(D) 4
5. Operating alone, Tap A takes twice as long as Tap B takes to fill an empty tank. Operating together at their respective constant rates, the taps can fill the tank in 6 hours. How many hours would it take the Tap A to fill the tank operating alone?
(A) 18
(B) 9
(C) 12
(D) 15
6. A shopkeeper sells two items at the price of Rs.160. If one of them is sold at 10% profit and another sold at 10% loss, then find the profit/loss?
(A) 3.23
(B) 5.75
(C) 2.5
(D) 6.9
7. The sum of ages of 5 children born at interval of 3 years each is 50 years. What is the age of youngest child?
(A) 10
(B) 2
(C) 7
(D) 4
8. The cost of the components $\mathrm{x}, \mathrm{y}, \mathrm{z}$ of a machine worth Rs. 45,000 in 1996 is given as a pie chart? In the following year, the cost of the components $\mathrm{x}, \mathrm{y}, \mathrm{z}$ increased by $10 \%, 30 \%$, and 20% respectively. What is the cost of the machine in 1997 ?
(A) 54375
(B) 52375
(C) 54475
(D) 54365

Email: info@engineeringolympiad.in, Website: www.engineeringolympiad.in
9. What is the $2777^{\text {th }}$ digit in the sequence $1234567891011121314 \ldots \ldots$?
(A) 9
(B) 3
(C) 7
(D) 6
10. Production of sugar (in thousand tons) by three sugar mills over the year

Which of the statement is true ?
i. Ratio between the production of B in 2011 to C in 2012 is $3: 11$
ii. Average production of A in four years is 20
iii. Percentage increase in C in 2011 from the previous year is 100%
(A) i \& ii only
(B) ii \& iii only
(C) i \& iii only
(D) i, ii \& iii
11. "Students who hired a hack to write their projects were punished" Choose the best assumption for the given statement:
(A) Students have become mischievous
(B) Hack's are intelligent
(C) Hiring a hack is inexpensive
(D) Students have projects to be done
12. Find out the error part in the given sentence

Rajesh is/ smarter enough/ to get selected for his post/ without any recommendations
(A)
(B)
(C)
(D)
13. Arrange the given parts of the sentence in correct order: and recognize / all of us must / the machine tool industry / in the Country/
[1]
[2]
[3]
[4]
strategic and vital / have a deep introspection / the fact that /
has a very special place / from the point / interests of the nation.
[8]
[9]
(A) $2,4,7,8,6,9,1,10,3,5$
(B) $2,6,5,8,4,3,1,7,10,9$
(C) $2,3,8,9,6,7,10,4,1,5$
(D) $2,6,1,7,3,8,4,9,5,10$
14. Choose the appropriate word which gives the meaning of the sentence given:

A critical situation in which no progress can be made:
(A) Hullabaloo
(B) Aggression
(C) Histrionic
(D) Impasse
15. There was once a newspaper vendor who had a rude customer. Every morning the customer throws the money at the vendor. The vendor would pick up the money, smile politely and say, "Thank you sir". The vendor's assistant asked him "why are you always polite with him when he is so rude to you". The vendor replied "He can't help being rude and I can't help being polite".
What is vendor's conclusion?
(A) Strive for excellence
(B) Work is worship
(C) Rebels do not realize
(D) Keep faith in our own ideas
16. In 1991, produce growers began using a new, inexpensive pesticide, provoking many objections that they would damage both the environment and the produce they were growing. However, the fears have proven unfounded as, though 1996, produce prices had dropped and no ill effects had been reported.
Which of the following, if true, would be the strongest objection to the argument above?
(A) Consumption of the produce declined from 1991 to 1993, but rose sharply from 1994 to 1996.
(B) Several areas in which use of the pesticide was forbidden have also experienced a drop in produce prices.
(C) The amount of produce grown in 1991 was larger than that of 1996.
(D) The time since the beginning of the use of the pesticide has been too short to allow some of the predicted effects to occur.
17. Choose the appropriate antonym for the bold word Linger
(A) Sojourn
(B) Fiery
(C) Condone
(D) Quilt
18. Find the proper meaning of the word given in bold letters APP won the election fair and square.
(A) Honestly
(B) Falsely
(C) Corruptedly
(D) Unexpectedly
19. None but the rich can afford air travel. Some of those who travel by air become sick. Some of those who become sick require treatment.
Choose the best conclusion:
(A) All the rich travel by air
(B) All the persons who travel by air become sick
(C) All sick persons travel by air
(D) Only rich can travel by air
20. Sentence completion

According to Maslow's theory of need hierarchy, material is the \qquad demand of human beings, in that it provides the founding floor from which the other demands are generated.
(A) essential
(B) basic
(C) final
(D) emotional

Section-II: Technical

1. A bag contains 3 green and 2 red balls. A man draws 2 balls at random from the bag. If he is to receive 20paise for every green ball he draws and 10paise for every red one, what is his expectation (in paisa)?
(A) 32
(B) 42
(C) 52
(D) 65
2. The contents of a four-bit register are initially 1011. The register is shifted six times to the right the serial input being 101111.
shift Register
(101111)

What are the contents of the register after six clock pulses?
(A) 1110
(B) 0111
(C) 1111
(D) 1011
3. Find out the maximum sine wave output voltage at 2 MHz frequency, if the op-Amp slew rate is $10 \mathrm{~V} / \mu \mathrm{s}$.
(A) 0.8 V
(B) $\frac{2}{\pi} \mathrm{~V}$
(C) $\frac{10}{2 \pi} \mathrm{~V}$
(D) 0.4 V
4. In the following circuit, the output f is

(A) $x y$
(B) 0
(C) 1
(D) None of these
5. If $\mathrm{f}=\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}}$, then $\nabla \mathrm{f} \cdot \mathrm{r}=$
(A) nf
(B) f
(C) n
(D) 0
6. Adding a degeneration resistor R_{E} to a common emitter BJT amplifier will mainly reduce
(A) Voltage gain
(B) Input impedance
(C) Amplifier bandwidth
(D) Output impedance
7. If the above decoder is used only to display the numbers from 0 to 7 (consider x, y, z as input variables) then what is the simplified Boolean expression (minimal sop) for the output line ' a '?
(A) $y+x z+x{ }^{\prime} z^{\prime}$
(B) $y+x ' z+x z$ '
(C) $x+y z+y ' z '$
(D) $x+y^{\prime} z+y z '$
8. In a n-type semiconductor, Fermi level lies 0.30 eV below the conduction band at $300^{0} \mathrm{~K}$. If temperature increases to $330^{\circ} \mathrm{K}$, then find the new position of Fermi level (assume N_{C} to be constant w.r.t temperatures).
(A) Goes up by 0.33 eV
(B) Goes down by 0.33 eV
(C) Goes up by 0.37 eV
(D) Goes down by 0.37 eV
9. The slope in Ampere/Volt of the $\mathrm{I}_{\mathrm{D}}-\mathrm{V}_{\mathrm{DS}}$ load-line for the circuit shown below is
(A) $\frac{-1}{400}$
(B) $\frac{-1}{1600}$
(C) $\frac{-1}{2000}$
(D) $\frac{-1}{31000}$

10. Consider two intrinsic semiconductors A and B. The figure below shows variation of $\ln \rho$ with $\frac{1}{\mathrm{~T}}$, where ρ is the resistivity and T the temperature for the two semiconductors. Which is more likely an insulator?
(A) A
(B) B
(C) Both A and B
(D) None

11. For the configuration shown below, to keep output voltage constant, the load resistance must be

(A) $\mathrm{R}<400 \Omega$
(B) $600 \Omega<\mathrm{R}<2400 \Omega$
(C) $400 \Omega<\mathrm{R}<2000 \Omega$
(D) $500 \Omega<\mathrm{R}<2200 \Omega$
12. $\operatorname{Ltt}_{\mathrm{x} \rightarrow \infty}^{\operatorname{Lt}}\left[\frac{\mathrm{x}^{2}+5 \mathrm{x}+3}{\mathrm{x}^{2}+\mathrm{x}+2}\right]^{\mathrm{x}}=$
(A) e^{4}
(B) e^{3}
(C) e^{2}
(D) e
13. A uniform plane wave travelling in air is incident on the plane boundary between air and another dielectric with $\varepsilon_{\mathrm{r}}=9$. For the incident power of 10 W on the boundary the reflected power (W) is
(A) 2.5
(B) 3.5
(C) 4.5
(D) 5.5
14. Find the voltages V_{1} and V_{2} for the circuit shown below.

(A) $0.6 \mathrm{~V}, 2.75 \mathrm{~V}$
(B) $2.7 \mathrm{~V}, 2.23 \mathrm{~V}$
(C) $5 \mathrm{~V}, 4 \mathrm{~V}$
(D) $0.2 \mathrm{~V}, 0.8 \mathrm{~V}$
15. The steady state current response of a series R-L-C circuit to sinusoidal input of $10 \sin (\omega \mathrm{t}) \mathrm{V}$ is given by $5 \sin \left(\omega \mathrm{t}-30^{\circ}\right) \mathrm{A}$.Its current response to an input of $10 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$ will be
(A) $5 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{A}$
(B) $5 \sin (\omega t) \mathrm{A}$
(C) $5 \sin \left(\omega t+30^{\circ}\right) \mathrm{A}$
(D) $5 \cos (\omega t) \mathrm{A}$
16. $\oint\left(x y+y^{2}\right) d x+x^{2} d y=$ \qquad where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$
(A) $1 / 20$
(B) $-1 / 20$
(C) $1 / 40$
(D) $-1 / 40$
17. In the following, pick out the linear systems.
(i) $\frac{d^{2} y(t)}{d t^{2}}+a_{1} \frac{d y(t)}{d t}+a_{2} y(t)=u(t)$
(ii) $\frac{y(t) d y(t)}{d t}+a_{1} y(t)=a_{2} u(t)$
(iii) $\frac{2 \mathrm{~d}^{2} \mathrm{y}(\mathrm{t})}{\mathrm{dt}^{2}}+\mathrm{t} \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+\mathrm{t}^{2} \mathrm{y}(\mathrm{t})=5$
(A) (i) and (ii)
(B) (i) only
(C) (i) and (iii)
(D) (ii) and (iii)
18. A parallel polarized wave propagates from air into a dielectric at Brewster's angle of 75°. The relative permittivity of the dielectric will be
(A) 13.93
(B) 15.5
(C) 16.83
(D) 12.23
19. A plane electromagnetic wave with magnetic field $\overrightarrow{\mathrm{H}}_{\mathrm{i}}=\cos \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \hat{\mathrm{a}}_{\mathrm{y}} \mathrm{mA} / \mathrm{m}$ travels in air for $\mathrm{z} \leq 0$ and is incident normally on a lossless non-magnetic dielectric medium of relative permittivity 4 , which occupies the region $z \geq 0$. Which of the following is the expression for the reflected electric field (in mV / m)?
(A) $\overrightarrow{\mathrm{E}}_{\mathrm{r}}=-40 \pi \cos \left(10^{8} \mathrm{t}+\beta \mathrm{z}\right) \hat{\mathrm{a}}_{\mathrm{x}}$
(B) $\overrightarrow{\mathrm{E}}_{\mathrm{r}}=-40 \pi \cos \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \hat{\mathrm{a}}_{\mathrm{x}}$
(C) $\overrightarrow{\mathrm{E}}_{\mathrm{r}}=-80 \pi \cos \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \hat{\mathrm{a}}_{\mathrm{x}}$
(D) $\overrightarrow{\mathrm{E}}_{\mathrm{r}}=80 \pi \cos \left(10^{8} \mathrm{t}+\frac{\mathrm{z}}{\beta}\right) \hat{\mathrm{a}}_{\mathrm{x}}$
20. The solution for contour integral $\oint_{|z|=1} e^{1 / z} \sin \frac{1}{z} d z$ is
(A) $2 \pi \mathrm{i}$
(B) $\pi \mathrm{i}$
(C) 0
(D) $5 \pi \mathrm{i}$
21. If $x[n]=\left\{\begin{array}{l}\frac{2}{\pi}, n=0 \\ \left(\frac{2}{\pi}\right) \frac{\sin \pi n}{\pi n}, n \neq 0\end{array}\right.$, the energy of $x[n]$ is
(A) $\left(\frac{2}{\pi}\right)^{2}$
(B) $\frac{1}{\pi}$
(C) $\frac{1}{2 \pi}$
(D) $\frac{3}{\pi}$
22. Which one of the following statement does not pertain to the equation $\nabla \cdot \mathrm{B}=0$?
(A) Single magnetic pole cannot exist
(B) B is solenoidal
(C) Magnetic field is perpendicular to the electric field
(D) There are no sinks and sources for magnetic fields
23. Given impulse response of filter

The amplitude spectrum of same filter is

24. Calculate the effective inductance of the following circuit.

(A) 24 H
(B) 22 H
(C) 18 H
(D) 10 H
25. The circuit shown in the following figure is a
(A) LPF
(B) HPF
(C) BPF
(D) APF
26. Assume simplified h-parameter model for the transistor circuit shown below. $\mathrm{h}_{\mathrm{fe}}=100, \mathrm{~h}_{\mathrm{ie}}=900 \Omega ; \mathrm{R}_{\mathrm{s}}=0$.
The small signal voltage gain $\frac{V_{o}}{V_{i}}$ is given by
(A) -22
(B) -20
(C) 20
(D) 22

29. In the circuit shown below, find the current $i(t)$ for $t \geq 0$ when the switch is opened at $\mathrm{t}=0$

(A) $5 \mathrm{e}^{20 t} \mathrm{~A}$
(B) $2 \mathrm{e}^{-40 \mathrm{t}} \mathrm{A}$
(C) $5 \mathrm{e}^{-10 \mathrm{t}} \mathrm{A}$
(D) $2 \mathrm{e}^{-20 t} \mathrm{~A}$
30. The circuit shown is based on ideal operational amplifier. It acts as a
(A) Substractor
(B) Adder
(C) Buffer
(D) Divider

