HTNO MLR 1	6
------------	---

Code No: A2HS02

MLR INSTITUTE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

I B.Tech I Semester Regular Examinations, December-2016 COMPUTATIONAL METHODS AND INTEGRAL CALCULUS (Common to CSE, AERO & IT)

Note: 1. This question paper contains two parts A and B

- 2. Part A is compulsory which carries 25 marks. Answer all questions in Part A
- 3. Part B contains of 5 units. Answer any one full question from each unit. Each question carries 10 Marks and may have a, b, c sub questions.

PART-A

1. a) Explain False position method, to find the root of the equation
$$f(x) = 0$$
 (2M)

b) Evaluate
$$\Delta^{10}[(1-x)(1-3x^2)(1-5x^3)(1-7x^4)]$$
 with h=1 (2M)

c) Find the value of
$$\int_{1}^{4} \frac{1}{x} dx$$
 by using Trapezoidal rule with h = 1. (2M)

d)Evaluate
$$\int_{0}^{2} \int_{0}^{3} y \, dy \, dx.$$
 (2M)

e) Show that
$$\overline{F} = (e^x z - 2xy)\overline{i} - (x^2 - 1)\overline{j} + (e^x + z)\overline{k}$$
 is conservative. (2M)

X	1	2	3	4
F(x)	1	4	27	35

c) Calculate y_1 , if $y_0 = 2$, $y_0' = 0$, $y_0'' = 2$, $y_0''' = 0$, $y_0''' = 6$ by Taylor's series formula with h = 0.2 (3*M*)

(314)

d) Show that
$$B(m,n) = B(n,m)$$
 (3M)

e) Find unit normal vector to the surface
$$x^2 + y^2 + 2z^2 = 26$$
 at the point $(2,2,3)$ (3M)

PART-B

- 3. a) Using Newton Raphson method, find the root of the equation $f(x) = e^x 3x$ which lies between 0 and 1. (5*M*)
 - b) Apply Gauss Seidel method to solve the system of equations

$$8x - 3y + 2z = 20, 4x + 11y - z = 33, 6x + 3y + 12z = 36.$$
 (5*M*)

OR

- 4. a) By using Bisection method, find the root of the equation $x^3 x 11 = 0$. (5*M*)
 - b) Solve the system of equations 20x + y 2z = 17, 3x + 20y z = -18, 2x 3y + 20z = 25 by Gauss Jacobi method (5*M*)

5. a) Use Lagrange's interpolation formula to find y(10) (5M)

X	5	6	9	11
У	12	13	14	16

b) Fit a second degree polynomial to the following data by the method of least squares (5M)

X	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

OR

6. a) Given $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.766$, $\sin 55^\circ = 0.8192$, and $\sin 60^\circ = 0.866$. Find $\sin 52^\circ$ using Newton's forward interpolation formula. (5*M*)

b) Fit a straight line to the following data by the method of least squares

X	5	10	15	20	25
у	15	19	23	26	30

7. a) Apply Simpson's 1/3 rule to estimate an approximate value of $\int_{1}^{2} \frac{e^{x}}{x} dx$, by taking n = 4. (5*M*)

b) Use Runge – Kutta fourth order method to solve the initial value problem $\frac{dy}{dx} = y - x$, y(0) = 2 and find y(0.1). (5*M*)

OR

8. a) Solve
$$y' = y + x$$
, $y(0) = 1$ by using Picard's method and hence find $y(0.1)$ (5M)

b) Applying, Simpson's 3/8 rule estimate an approximate value of the integral $\int_{0}^{6} \frac{dx}{1+x}$. (5*M*)

9. a) Evaluate $\iint_R (4xy - y^2) dxdy$, where R is the rectangle bounded by x = 1, x = 2, y = 0, y = 3.

b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{4}\theta \cos^{5}\theta d\theta$ (5M)

OR

10. a) Evaluate
$$\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$$
 (5*M*)

b) Prove that
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
 (5*M*)

11. a) If
$$\bar{a} = (3x^2y - z)\bar{i} + (xz^3 + y^4)\bar{j} - 2x^3z^2\bar{k}$$
 find $grad(div\bar{a})$ at (2,-1,0) (5M)

b) Find $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = x^2 y^2 \vec{i} + y \vec{j}$ and the curve $y^2 = 4x$ in xy plane from (0,0) to (4,4).

OR

12. a) If
$$\overline{f} = xy^2\overline{i} + 2x^2yz\overline{j} - 3yz^2\overline{k}$$
 find $curl\ \overline{f}$, $div\ \overline{f}$ at the point $(1, -1, 1)$. (5M)

b) Evaluate by Green's theorem $\int (y - \sin x) dx + \cos x dy$ where C is the triangle enclosed by the

lines
$$y = 0, x = \frac{\pi}{2}, \pi y = 2x$$
 (5M)

(5M)