PAPER - II

CHEMICAL SCIENCES

Note: Attempt all the questions. Each question carries *two* (2)marks.

1.	Gas which bleaches the colour of the flowers and vegetables by reduction is			
	1)	SO_2		
	2)	Cl_2		
	3)	$\mathrm{H}_{2}\mathrm{S}$		

2. A greenish yellow gas reacts with an alkali metal hydroxide to form a halite, which can be used in fireworks and safety matches. The gas and halite respectively are

```
    Cl<sub>2</sub>, KClO<sub>3</sub>
    Br<sub>2</sub>, KBrO<sub>3</sub>
    I<sub>2</sub>, NaIO<sub>3</sub>
```

 Br_2

4) Cl_2 , $NaClO_3$

3. The element which has only +3 oxidation state is

Eu
 Tb
 Tm

1)

 Gd

4)

4. The hybridisation of Copper in $[CU(NH_3)_4]SO_4$ is

Sp³d²
 Sp³
 Sp²

4) dSp^2

5. The hexadentate ligand is

1) acetyl acetonate

2) 8-hydroxy quinolate

3) ethylene diamine tetraacetate

4) ethylenediamine

- **6.** The size of the hole in the centre of the porphyrin ring system is ideal for accommodating
 - 1) 1st transition series
 - 2) 2nd transition series
 - 3) 3rd transition series
 - 4) Alkaline earth metal
- 7. If by mistake some radioactive substance gets into human body, then from the point of view of radiation damage, the most harmful will be one that emits
 - 1) Gamma rays
 - 2) Neutrons
 - 3) β rays
 - 4) α rays
- 8. For an Eigen function $lpha^{ikx}$ of linear momentum operator $\hat{P}x$, the Eigen value is
 - 1) ik
 - 2) *i*
 - 3) $i\hbar$
 - 4) $k\hbar$
- 9. is Laplacian operator.

1)
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

2)
$$i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}$$

3)
$$\hat{A}\psi = a\psi$$

4)
$$\hat{A}\widehat{A^n} - \widehat{A^n}\widehat{A}$$

 \mathbf{F}

- 10. Consider a simple hypothetical reaction $A \longrightarrow L$. The concentration of the product L goes on increasing with time. Hence the rate of the reaction (r) can also be expressed in term of increasing in concentration of product, L as well. Thus r is
 - 1) $\frac{-dt}{dc1}$
 - $2) \qquad \frac{d[L]}{dt}$
 - 3) $\frac{dt}{dc1}$
 - 4) $\frac{-d[L]}{dt}$
- 11. Standard solution of KNO₃ is used to make salt bridge because
 - 1) Velocity of K⁺ is greater than of NO₃
 - 2) Velocity of NO_3^- is greater than of K^+
 - 3) Velocity of both K^+ and NO_3^- are nearly same
 - 4) KNO₃ is highly soluble in water
- **12.** In an electrolytic cell, the flow of electron is from
 - 1) cathode to anode solution
 - 2) cathode to anode through external supply
 - 3) cathode to anode through internal supply
 - 4) anode to cathode through internal supply
- 13. The reduction potentials of Cu^{2+}/Cu and Ag^{+}/Ag electrodes are 0.34 V and 0.80 V respectively. For what concentration of Ag^{+} ions will the EMF of the cell at 25°C is zero. Given that the concentration of Cu^{2+} is 0.01 M
 - 1) $1.65 \times 10^{-9} \,\mathrm{M}$
 - 2) $11.45 \times 10^{-9} \,\mathrm{M}$
 - 3) $2.34 \times 10^{-7} \text{ M}$
 - 4) $4.22 \times 10^{-7} \text{ M}$

14. The correct equation representing Maxwell-Boltzmann distribution law is

1)
$$n_i = g_i e^{-(\alpha + \beta \varepsilon_i)}$$

$$2) \qquad \frac{n_i}{n} = g_i e^{-(\alpha - \beta \varepsilon_i)}$$

3)
$$n_i = \frac{g_i}{[e^{(\alpha + \beta \varepsilon_i)} - 1]}$$

4)
$$n_i = \frac{g_i}{[1 - e^{(\alpha + \beta \varepsilon_i)}]}$$

15. The IUPAC name of the following compound is

$$O_2N$$
 CH_3

- 1) 3-methyl-5-nitrocyclohexanone
- 2) 5-methyl-3-nitrocyclohexanone
- 3) 3-methyl-5-nitro-1-oxocyclohexane
- 4) 5-methyl-3-nitro-1-oxocyclohexane

16. The priority order of groups for consideration in Cahn Ingold Prelog rule is

- 1) benzyl > allyl > isopropyl > ethyl
- 2) benzyl > isopropyl > ethyl > allyl
- 3) benzyl > ethyl > allyl > isopropyl
- 4) isopropyl > benzyl > allyl > ethyl

17. The Newmann projection of *meso-*2,3-dibromobutane is

- 18. In acidic medium, oxepin can be easily rearranged to
 - 1) phenol
 - 2) 2,5-dimethylfuran
 - 3) 2,5-dihydroxylfuran
 - 4) 4-hydroxypyran

19. Choose the correct statement :

- 1) In 5α -cholestan- 3β -ol the hydroxyl group and the angular methyl group are cis to each other, but in 5β -cholestan- 3β -ol, they are trans to each other
- 2) In 5α -cholestan- 3β -ol the hydroxyl group and the angular methyl group are trans to each other, but in 5β -cholestan- 3β -ol, they are cis to each other
- 3) In both 5α -cholestan- 3β -ol and 5β -cholestan- 3β -ol, the hydroxyl group and the angular methyl group are cis to each other
- 4) In both 5α -cholestan- 3β -ol and 5β -cholestan- 3β -ol, the hydroxyl group and the angular methyl group are trans to each other
- **20.** A compound on ozonolysis yields only acetone and no other carbonyl compounds. The compound is
 - 1) 1-butene
 - 2) 2,3-dimethyl-2-butene
 - 3) 1,3-butadiene
 - 4) cyclohexene
- **21.** The ¹H NMR spectral data of a compound are given: 1.3,t, 6H; 4.29, q, 4H; 7.4 to 7.9, m, 4H. The molecular mass is 222. The compound is
 - 1) diethylphthalate
 - 2) diethyl tere-phthalate
 - 3) dimethyl phthalate
 - 4) dimethyl tere-phthalate

	1)	1A°
	2)	100A°
	3)	1 nm
	4)	10 nm
23.	In m	edicine $MgSO_4 \cdot 7H_2O$ is used as
	1)	purgative
	2)	antiseptic
	3)	analgesic
	4)	Antipyretics
24.	Choo	se the supramolecule from the given below compounds
	1)	Glucose
	2)	DNA
	3)	Caffine
	4)	Glycine
25.	Eutr	ophication is process which involves
	1)	Depletion of ozone layer
	2)	Increase in the concentration of O_3 in water
	3)	Decrease in the concentration of dissolved oxygen in water by algae
	4)	Decrease in the level of SO_2 in air
26.	Gree	n Chemistry synthesis could also involves which of the following
	1)	High temperature
	2)	Dicholoromethane
	3)	Fossil fuels
	4)	Microwave

22.

The diameter of bucky ball is about

27 .	The	atomic number of Cr and Cu is 24, 29 and its electronic configuration is
	1)	$3d^5\ 4s^1$ and $3d^{10}4s^1$
	2)	$3d^4$ $4s^2$ and $3d^{10}4s^1$
	3)	$3\mathrm{d}^5~4\mathrm{s}^1$ and $3\mathrm{d}^94\mathrm{s}^2$
	4)	$3d^4$ $4s^2$ and $3d^94s^2$
28.		difference in the electronegativity scale between the two atom is 1.9, the nature se bond is
	1)	75% ionic
	2)	50% ionic
	3)	25% ionic
	4)	100% ionic
29.		OH and HOCl both contains –OH groups but the former is base while the later is in their aquous solution, because
29.		
29.	acid	in their aquous solution, because
29.	acid	in their aquous solution, because Na-O bond is more polar than O-H bond in NaOH
29.	acid 1) 2)	in their aquous solution, because Na-O bond is more polar than O-H bond in NaOH -O-H bond is more polar than Na-O bond in NaOH
29.	acid 1) 2) 3)	in their aquous solution, because Na-O bond is more polar than O-H bond in NaOH -O-H bond is more polar than Na-O bond in NaOH H-O bond in HOCl is less polar
29. 30.	acid 1) 2) 3) 4)	in their aquous solution, because Na-O bond is more polar than O-H bond in NaOH -O-H bond is more polar than Na-O bond in NaOH H-O bond in HOCl is less polar
	acid 1) 2) 3) 4)	in their aquous solution, because Na-O bond is more polar than O-H bond in NaOH -O-H bond is more polar than Na-O bond in NaOH H-O bond in HOCl is less polar -O-Cl bond in HOCl is more polar
	acid 1) 2) 3) 4) The	in their aquous solution, because Na-O bond is more polar than O-H bond in NaOH -O-H bond is more polar than Na-O bond in NaOH H-O bond in HOCl is less polar -O-Cl bond in HOCl is more polar oil of Vitriol is
	acid 1) 2) 3) 4) The 1)	in their aquous solution, because $Na\text{-}O \text{ bond is more polar than O-H bond in NaOH}$ $-O\text{-}H \text{ bond is more polar than Na-}O \text{ bond in NaOH}$ $H\text{-}O \text{ bond in HOCl is less polar}$ $-O\text{-}Cl \text{ bond in HOCl is more polar}$ oil of Vitriol is $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$
	acid 1) 2) 3) 4) The 1) 2)	in their aquous solution, because $Na\text{-}O \text{ bond is more polar than O-H bond in NaOH}$ $-O\text{-}H \text{ bond is more polar than Na-O bond in NaOH}$ $H\text{-}O \text{ bond in HOCl is less polar}$ $-O\text{-}Cl \text{ bond in HOCl is more polar}$ oil of Vitriol is $\text{FeSO}_4 \cdot 7H_2O$ $\text{CuSO}_4 \cdot 5H_2O$

31.	The separation of lanthanides in ion exchange method is based on	
	1)	Size of hydrated ions
	2)	Size of unhydrated ions
	3)	Basicity of hydroxides
	4)	Solubility of their nitrates
32 .	Which of the following is not considered as an organometallic compound?	
	1)	Ferrocene
	2)	Cis-platin
	3)	Zeisel's salt
	4)	Grignard reagent
33.	The	equilibrium constants for the formation of $Ni(en)_3^{2+}$ is 10^{10} fold greater than the
		librium constant for the formation of $Ni(NH_3)_6^{2+}$. The primary explanation for
		large difference is
	1)	John teller effect
	2)	Chelate effect
	3)	Crystal field effect
	4)	Ammonalysis effect
34.	Gel	permeation chromatography can be used to separate
J _ V	1)	Lanthanides
	2)	Alkaline earths
	4)	Aikaime earms
	,	Alkali motala
	3)	Alkali metals Low molecular weight peptide

	1)	$C_{2(z)}$
	2)	σ_{xy}
	3)	E
	4)	I
36.	Eclip	sed form of ruthenacene is
	1)	D_{5h}
	2)	C_{5v}
	3)	D_{2h}
	4)	S_5
37.	Whic	h of the following does not contain C_3 axis?
	1)	POCl_3
	2)	$\mathrm{NH_4^+}$
	3)	$\mathrm{H_3O^+}$
	4)	ClF_3
38.		temperature (T) dependence of the equilibrium constant (K) of a chemical ion is correctly described by the following statement
	1)	For an endothermic reaction the slope of $\ln k$ vs $1/T$ plot is positive
	2)	For an endothermic reaction $k \alpha T$
	3)	For an endothermic reaction $k = T$
	4)	If ΔH is independent of temperature, the change in k with T is smaller at lower temperature

11

M0102

Equivalent symmetry operation for combined symmetry operation $\sigma_{xz}\,\sigma_{yz}$ is

35.

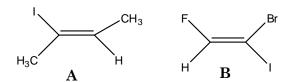
 \mathbf{F}

39.	9. Which of the following statement is not true for lyophilic sols?	
	1)	It is stable
	2)	It can be prepared in high concentration
	3)	Its colloidal particles are highly solvated
	4)	Its colloidal particles are less solvated
40.		
	of	
	1)	${ m KI}~{ m and}~{ m AgNO}_3$
	2)	${ m AgI}\ { m and}\ { m AgNO}_3$
	3)	AgI and KI
	4)	${ m AgNO}_3$ and ${ m KI}$
41.	For a	an ideal gas system the ratio of MPV : AV : Rms is
	1)	1:1.12:1.22
	2)	1:1.414:1.732
	3)	1:2:3
	4)	1:0.82:0.62
42.	Find the value of the magnetic field necessary for protons to absorb at frequency of	
200.00MF		$00\mathrm{MHz}$
	1)	Bz = 4.6973T
	2)	Bz = 2.2131T
	3)	Bz = 8.1242T

4)

Bz = 6.1234T

	1)	ethyl	
	2)	phenyl	
	3)	cyclopropyl	
	4)	neopentyl	
44.	Cho	ose the wrong statement:	
	1)	Peterson reaction is known as sila Wittig reaction	
	2)	In Peterson reaction, the stereochemistry of the product formed can be reversed when the catalyst is changed from acid to base	
	3)	The Peterson olefination goes via four membered cyclic transition state	
	4)	The Peterson olefination involves a free radical intermediate	
45 .	Triacetoxyperiodinane is used as the oxidant in		
	1)	Des Martin oxidation	
	2)	Swern oxidation	
	3)	Baeyer Villiger reaction	
	4)	dienone phenol rearrangement	
46.	(S) s	sec-butyl tosylate on acetate treatment gives	
	1)	(S)sec-butyl acetate	
	2)	n-butyl acetate	
	3)	t-butyl acetate	
	4)	(R)sec-butyl acetate	
47 .	Whi	ch of the following statements is wrong?	
	1)	All the pericyclic reactions are concerted	
	2)	All the pericyclic reactions are not stereospecific	
	3)	The pericyclic reactions do not involve intermediates	


Which of the following cabanions is more stable?

43.

The pericyclic reactions go via cyclic transition state

4)

48. Which of the following statements is true?

- 1) A has E configuration and B has Z configuration
- 2) A has Z configuration and B has E configuration
- 3) Both A and B have Z configuration
- 4) Both A and B have E configuration

49. The following compound is used in the treatment of AIDS. How many stereoisomers are possible for this compound?

- 1) 4
- 2) 6
- 3) 8
- 4) 27

50. The main function of an enzyme is

- 1) to transport energy
- 2) to shift the equilibrium
- 3) to maintain the Ph
- 4) to catalyse a biological reaction

ROUGH WORK

ROUGH WORK