Write your Registration number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answer-booklet.

ALL ROUGH WORK IS TO BE DONE ON THIS BOOKLET CALCULATORS ARE NOT ALLOWED.

- \mathbb{Q} denotes the set of rational numbers.

Q 1. Let X, Y be normed linear spaces. Let $T: X \rightarrow Y$ be a linear map. Suppose T is an open mapping. Is T necessarily onto? Justify your answer.

Q 2. Let $M: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be the linear operator defined by

$$
(M f)(x)=x f(x),
$$

for $f \in L^{2}[0,1]$ and $x \in[0,1]$. Prove that M is bounded but not compact.

Q 3. Let A be an orthogonal matrix partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],
$$

where A_{11} is a square matrix. Prove that A_{11} is invertible if and only if A_{22} is invertible.
Q. 4 Let A be a $n \times n$ nonsingular matrix with all eigenvalues real and

$$
\operatorname{Trace}\left(A^{2}\right)=\operatorname{Trace}\left(A^{3}\right)=\operatorname{Trace}\left(A^{4}\right) .
$$

Find Trace (A).
Q. 5 Let p be a prime number. Given any positive integer n, write its p-ary expansion as

$$
n=\sum_{i=0}^{n} a_{i} p^{i},
$$

where $0 \leq a_{i}<p$. Show that the largest number e such that p^{e} divides n ! is given by the formula

$$
e=\sum_{i=1}^{n} a_{i} \frac{p^{i}-1}{p-1} .
$$

Q 6. Let S_{n} be the permutation group on $\{1, \ldots, n\}$. For $\pi \in S_{n}$, define

$$
I(\pi)=\left\{\{i, j\} \subset\{1, \ldots, n\}: \frac{\pi(j)-\pi(i)}{j-i}<0\right\}
$$

and $i(\pi)=\#(I(\pi))$, the number of elements in $I(\pi)$. Prove that

$$
I(\pi \circ \sigma)=I(\sigma) \triangle \sigma^{-1}(I(\pi))
$$

for each $\pi, \sigma \in S_{n}$. Hence prove that $\operatorname{sgn}: S_{n} \rightarrow\{-1,1\}$, defined by

$$
\operatorname{sgn}(\pi)=(-1)^{i(\pi)}
$$

is a group homomorphism.
[For any two sets A and B, the symmetric difference set $A \triangle B$ is defined as $A \triangle B=(A \backslash B) \cup(B \backslash A)$.
Also in the above $\sigma^{-1}(I(\pi))=\left\{\left\{\sigma^{-1}(i), \sigma^{-1}(j)\right\}:\{i, j\} \in I(\pi)\right\}$.]

Q 7. Let A be a finite set. For $0 \leq i \leq 2$, let a_{i} be the number of subsets B of A such that

$$
\#(B) \equiv i(\bmod 3)
$$

Prove that

$$
\left|a_{i}-a_{j}\right| \leq 1,
$$

for all $0 \leq i, j \leq 2$.

Q 8. Let $f(x)$ be an irreducible polynomial of degree 6 over a field K. Let L be an extension field of K of degree 2 . Prove that f is either irreducible over L, or f factors into two irreducible cubic polynomials over L.

Q 9. A subgroup M of a group G is said to be maximal if $M \neq G$ and whenever H is a subgroup of G with $M \subseteq H \subseteq G$, then either $H=M$ or $H=G$. Prove that the additive group $(\mathbb{Q},+)$ has no maximal subgroup.

Q 10. Suppose $f \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q}. Show that there is no complex number α such that $f(\alpha)=f(\alpha+1)=0$.

